Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
2.
Nature ; 594(7863): 391-397, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135525

RESUMO

Flowing waters have a unique role in supporting global biodiversity, biogeochemical cycles and human societies1-5. Although the importance of permanent watercourses is well recognized, the prevalence, value and fate of non-perennial rivers and streams that periodically cease to flow tend to be overlooked, if not ignored6-8. This oversight contributes to the degradation of the main source of water and livelihood for millions of people5. Here we predict that water ceases to flow for at least one day per year along 51-60 per cent of the world's rivers by length, demonstrating that non-perennial rivers and streams are the rule rather than the exception on Earth. Leveraging global information on the hydrology, climate, geology and surrounding land cover of the Earth's river network, we show that non-perennial rivers occur within all climates and biomes, and on every continent. Our findings challenge the assumptions underpinning foundational river concepts across scientific disciplines9. To understand and adequately manage the world's flowing waters, their biodiversity and functional integrity, a paradigm shift is needed towards a new conceptual model of rivers that includes flow intermittence. By mapping the distribution of non-perennial rivers and streams, we provide a stepping-stone towards addressing this grand challenge in freshwater science.


Assuntos
Mapeamento Geográfico , Rios , Clima , Dessecação , Humanos , Hidrologia , Modelos Teóricos , Fatores de Tempo , Incerteza , Abastecimento de Água/estatística & dados numéricos
3.
Environ Sci Technol ; 58(28): 12621-12632, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954776

RESUMO

The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.


Assuntos
Microplásticos , Cloreto de Polivinila , Rios , Rios/química , Cloreto de Polivinila/química , Poluentes Químicos da Água , Raios Ultravioleta , Monitoramento Ambiental , Dessecação
4.
Ecotoxicology ; 32(3): 321-335, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36930439

RESUMO

The hyporheic zone, i.e. the water-saturated sediment beneath and alongside the riverbed, is exposed to multiple stressors. Agricultural-watershed rivers are frequently exposed to two concomitant stressors: clogging and copper contamination. However, one stressor exposure can increase sensitivity to a second stressor. The aim of this study was to experimentally test the cumulative effects of these two stressors on copper distribution and structural and functional microbial communities responses in the hyporheic zone. A slow filtration column experiment was conducted to compare the effects of 3 treatments of increasing complexity: 'Reference', 'Copper-contaminated' (dissolved copper added at 191 µg L-1), and 'Clogging+Copper' (dissolved copper + addition of 2 cm of fine sediment). Microbial community structure and activities were studied at 4 column sediment depths. The results showed that clogging did not modify the distribution of copper, which remained fixed in the first few centimetres. In the first few centimetres, clogging had a stimulating effect on microbial activities whereas copper had limited effects mainly on leucine aminopeptidase activity and microbial community tolerance to copper. The subsurface zone thus hosts significant different microbial communities from the communities in the deeper zones that were protected from surface stressors. This experiment confirms the valuable filtering role played by the hyporheic zone and shows that microbial responses are strongly correlated to microhabitat-scale physicochemical conditions in sediment.


Assuntos
Cobre , Microbiota , Cobre/toxicidade , Rios/química , Água , Filtração , Sedimentos Geológicos/química
5.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854211

RESUMO

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
6.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570183

RESUMO

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Nova Zelândia , Caramujos
7.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873359

RESUMO

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

8.
Ecography ; 44(10): 1511-1523, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720401

RESUMO

The current erosion of biodiversity is a major concern that threatens the ecological integrity of ecosystems and the ecosystem services they provide. Due to global change, an increasing proportion of river networks are drying and changes from perennial to non-perennial flow regimes represent dramatic ecological shifts with potentially irreversible alterations of community and ecosystem dynamics. However, there is minimal understanding of how biological communities respond functionally to drying. Here, we highlight the taxonomic and functional responses of aquatic macroinvertebrate communities to flow intermittence across river networks from three continents, to test predictions from underlying trait-based conceptual theory. We found a significant breakpoint in the relationship between taxonomic and functional richness, indicating higher functional redundancy at sites with flow intermittence higher than 28%. Multiple strands of evidence, including patterns of alpha and beta diversity and functional group membership, indicated that functional redundancy did not compensate for biodiversity loss associated with increasing intermittence, contrary to received wisdom. A specific set of functional trait modalities, including small body size, short life span and high fecundity, were selected with increasing flow intermittence. These results demonstrate the functional responses of river communities to drying and suggest that on-going biodiversity reduction due to global change in drying river networks is threatening their functional integrity. These results indicate that such patterns might be common in these ecosystems, even where drying is considered a predictable disturbance. This highlights the need for the conservation of natural drying regimes of intermittent rivers to secure their ecological integrity.

9.
Ecol Lett ; 23(9): 1330-1339, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32567194

RESUMO

Although metacommunity ecology has been a major field of research in the last decades, with both conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has only emerged recently and consists mostly of repeated static analyses. Here we propose a novel analytical framework to assess metacommunity processes using path analyses of spatial and temporal diversity turnovers. We detail the principles and practical aspects of this framework and apply it to simulated datasets to illustrate its ability to decipher the respective contributions of entangled drivers of metacommunity dynamics. We then apply it to four empirical datasets. Empirical results support the view that metacommunity dynamics may be generally shaped by multiple ecological processes acting in concert, with environmental filtering being variable across both space and time. These results reinforce our call to go beyond static analyses of metacommunities that are blind to the temporal part of environmental variability.


Assuntos
Ecossistema
10.
Bioscience ; 70(5): 427-438, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32440024

RESUMO

Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers-prevalent and highly dynamic ecosystems that sometimes dry-we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.

11.
Glob Chang Biol ; 25(5): 1612-1628, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698905

RESUMO

Understanding and predicting how biological communities respond to climate change is critical for assessing biodiversity vulnerability and guiding conservation efforts. Glacier- and snow-fed rivers are one of the most sensitive ecosystems to climate change, and can provide early warning of wider-scale changes. These rivers are frequently used for hydropower production but there is minimal understanding of how biological communities are influenced by climate change in a context of flow regulation. This study sheds light on this issue by disentangling structural (water temperature preference, taxonomic composition, alpha, beta and gamma diversities) and functional (functional traits, diversity, richness, evenness, dispersion and redundancy) effects of climate change in interaction with flow regulation in the Alps. For this, we compared environmental and aquatic invertebrate data collected in the 1970s and 2010s in regulated and unregulated alpine catchments. We hypothesized a replacement of cold-adapted species by warming-tolerant ones, high temporal and spatial turnover in taxa and trait composition, along with reduced taxonomic and functional diversities in consequence of climate change. We expected communities in regulated rivers to respond more drastically due to additive or synergistic effects between flow regulation and climate change. We found divergent structural but convergent functional responses between free-flowing and regulated catchments. Although cold-adapted taxa decreased in both of them, greater colonization and spread of thermophilic species was found in the free-flowing one, resulting in higher spatial and temporal turnover. Since the 1970s, taxonomic diversity increased in the free flowing but decreased in the regulated catchment due to biotic homogenization. Colonization by taxa with new functional strategies (i.e. multivoltine taxa with small body size, resistance forms, aerial dispersion and reproduction by clutches) increased functional diversity but decreased functional redundancy through time. These functional changes could jeopardize the ability of aquatic communities facing intensification of ongoing climate change or new anthropogenic disturbances.


Assuntos
Biota , Mudança Climática , Invertebrados/fisiologia , Rios , Movimentos da Água , Animais , Biodiversidade , Ecossistema , Monitoramento Ambiental , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento
12.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30628191

RESUMO

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Assuntos
Nutrientes/análise , Compostos Orgânicos/análise , Rios/química , Biofilmes/crescimento & desenvolvimento , Disponibilidade Biológica , Clima , Mudança Climática , Sedimentos Geológicos/química , Nitratos/análise , Folhas de Planta/química
13.
Conserv Biol ; 31(6): 1459-1468, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28188969

RESUMO

The concept of metacommunity (i.e., a set of local communities linked by dispersal) has gained great popularity among community ecologists. However, metacommunity research mostly addresses questions on spatial patterns of biodiversity at the regional scale, whereas conservation planning requires quantifying temporal variation in those metacommunities and the contributions that individual (local) sites make to regional dynamics. We propose that recent advances in diversity-partitioning methods may allow for a better understanding of metacommunity dynamics and the identification of keystone sites. We used time series of the 2 components of beta diversity (richness and replacement) and the contributions of local sites to these components to examine which sites controlled source-sink dynamics in a highly dynamic model system (an intermittent river). The relative importance of the richness and replacement components of beta diversity fluctuated over time, and sample aggregation led to underestimation of beta diversity by up to 35%. Our literature review revealed that research on intermittent rivers would benefit greatly from examination of beta-diversity components over time. Adequately appraising spatiotemporal variability in community composition and identifying sites that are pivotal for maintaining biodiversity at the landscape scale are key needs for conservation prioritization and planning. Thus, our framework may be used to guide conservation actions in highly dynamic ecosystems when time-series data describing biodiversity across sites connected by dispersal are available.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Rios , França , Modelos Biológicos
14.
Ecol Evol ; 14(2): e10883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327685

RESUMO

Inland waters are among the most threatened biodiversity hotspots. Ponds located in alpine areas are experiencing more rapid and dramatic water temperature increases than any other biome. Despite their prevalence, alpine ponds and their biodiversity responses to climate change have been poorly explored, reflecting their small size and difficult access. To understand the effects of climate change on alpine pond biodiversity, we performed a comprehensive literature review for papers published since 1955. Through analysis of their geographic distribution, environmental features, and biodiversity values, we identified which environmental factors related to climate change would have direct or indirect effects on alpine pond biodiversity. We then synthesized this information to produce a conceptual model of the effects of climate change on alpine pond biodiversity. Increased water temperature, reduced hydroperiod, and loss of connectivity between alpine ponds were the main drivers of biodiversity geographic distribution, leading to predictable changes in spatial patterns of biodiversity. We identified three major research gaps that, if addressed, can guide conservation and restoration strategies for alpine ponds biodiversity in an uncertain future.

15.
NPJ Biodivers ; 3(1): 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050515

RESUMO

Rivers are an important component of the global carbon cycle and contribute to atmospheric carbon exchange disproportionately to their total surface area. Largely, this is because rivers efficiently mobilize, transport and metabolize terrigenous organic matter (OM). Notably, our knowledge about the magnitude of globally relevant carbon fluxes strongly contrasts with our lack of understanding of the underlying processes that transform OM. Ultimately, OM processing en route to the oceans results from a diverse assemblage of consumers interacting with an equally diverse pool of resources in a spatially complex network of heterogeneous riverine habitats. To understand this interaction between consumers and OM, we must therefore account for spatial configuration, connectivity, and landscape context at scales ranging from local ecosystems to entire networks. Building such a spatially explicit framework of fluvial OM processing across scales may also help us to better predict poorly understood anthropogenic impacts on fluvial carbon cycling, for instance human-induced fragmentation and changes to flow regimes, including intermittence. Moreover, this framework must also account for the current unprecedented human-driven loss of biodiversity. This loss is at least partly due to mechanisms operating across spatial scales, such as interference with migration and habitat homogenization, and comes with largely unknown functional consequences. We advocate here for a comprehensive framework for fluvial networks connecting two spatially aware but disparate lines of research on (i) riverine metacommunities and biodiversity, and (ii) the biogeochemistry of rivers and their contribution to the global carbon cycle. We argue for a research agenda focusing on the regional scale-that is, of the entire river network-to enable a deeper mechanistic understanding of naturally arising biodiversity-ecosystem functioning coupling as a major driver of biogeochemically relevant riverine carbon fluxes.

16.
Ecol Evol ; 14(5): e11466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803609

RESUMO

Floodplain wetlands are critical to the conservation of aquatic biodiversity and the ecological integrity of river networks. However, increasing drought severity and frequency caused by climate change can reduce floodplain wetlands' resistance and recovery capacities. Mollusks, which are common inhabitants of floodplain wetlands, are among the most vulnerable species to drought. However, the response of mollusk communities to drought has received little attention. Here, we investigated how the structure and functional traits of mollusk communities changed in response to varying hydrological conditions, including a flash drought (FD) in the Poyang Lake floodplain wetland. Our findings showed that FD strongly reduced mollusk abundance and biomass, decreased both α- and ß-diversity, and resulted in the extinction of bivalve taxa. A sudden shift in community trait structure was discovered due to the extinction of many species. These traits, which include deposit feeding, crawling, scraping, aerial respiration, and dormancy, help mollusks survive in FD and tolerate completely dry out of their Changhuchi habitat. Finally, we discovered that dissolved oxygen was an important controlling variable for mollusk communities during drought. Our findings provide a scientific basis for the management and conservation of floodplain wetland biodiversity in the context of increasing drought frequency and intensity.

17.
Ecology ; 105(2): e4219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037301

RESUMO

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Água Doce , Fatores de Tempo
18.
Sci Data ; 11(1): 601, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849407

RESUMO

Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.


Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , Ecossistema
19.
Nat Rev Earth Environ ; 4: 815-830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38784683

RESUMO

Non-perennial river segments - those that recurrently cease to flow or frequently dry - occur in all river networks and are globally more abundant than perennial (always flowing) segments. However, research and management have historically focused on perennial river segments. In this Review, we outline how non-perennial segments are integral parts of river networks. Repeated cycles of flowing, non-flowing and dry phases in non-perennial segments influence biodiversity and ecosystem dynamics at different spatial scales, from individual segments to entire river networks. Varying configurations of perennial and non-perennial segments govern physical, chemical and ecological responses to changes in the flow regimes of each river network, especially in response to human activities. The extent of non-perennial segments in river networks has increased owing to warming, changing hydrological patterns and human activities, and this increase is predicted to continue. Moreover, the dry phases of flow regimes are expected to be longer, drier and more frequent, albeit with high regional variability. These changes will likely impact biodiversity, potentially tipping some ecosystems to compromised stable states. Effective river-network management must recognize ecosystem services (such as flood risk management and groundwater recharge) provided by non-perennial segments and ensure their legislative and regulatory protection, which is often lacking.

20.
Sci Total Environ ; 867: 161537, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640879

RESUMO

Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species. We found 160 time-series containing NICS between 1983 and 2019, to infer temporal patterns and environmental drivers of species and region-specific trends. Using a combination of meta-regression and generalized linear models, we found no significant temporal trend for the abundance of any species (Procambarus clarkii, Pacifastacus leniusculus or Faxonius limosus) at the European scale, but identified species-specific predictors of abundances. While analysis of the spatial range expansion of NICS was positive (i.e. increasing spread) in England and negative (significant retreat) in northern Spain, no trend was detected in Hungary and the Dutch-German-Luxembourg region. The average invasion velocity varied among countries, ranging from 30 km/year in England to 90 km/year in Hungary. The average invasion velocity gradually decreased over time in the long term, with declines being fastest in the Dutch-German-Luxembourg region, and much slower in England. Considering that NICS pose a substantial threat to aquatic biodiversity across Europe, our study highlights the utility and importance of collecting high resolution (i.e. annual) biomonitoring data using a sampling protocol that is able to estimate crayfish abundance, enabling a more profound understanding of NICS impacts on biodiversity.


Assuntos
Astacoidea , Ecossistema , Animais , Espécies Introduzidas , Biodiversidade , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA