Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771244

RESUMO

The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.


Assuntos
Callithrix , Cognição , Conectoma , Macaca , Animais , Camundongos , Cognição/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Cerebral/fisiologia
2.
Cereb Cortex ; 33(24): 11501-11516, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874022

RESUMO

Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Macaca mulatta/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Cálcio , Calbindinas , Glutamatos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo
3.
Alzheimers Dement ; 20(4): 2843-2860, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38445818

RESUMO

INTRODUCTION: Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS: We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION: These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Córtex Pré-Frontal Dorsolateral , Macaca mulatta/metabolismo , Proteínas tau/líquido cefalorraquidiano
4.
Mol Psychiatry ; 27(10): 4252-4263, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732693

RESUMO

Glutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3). GCPII-mGluR3 signaling is increasingly linked to higher cognition, as genetic alterations that weaken mGluR3 or increase GCPII signaling are associated with impaired cognition in humans. Recent evidence from macaque dorsolateral prefrontal cortex (dlPFC) shows that mGluR3 are expressed on dendritic spines, where they regulate cAMP-PKA opening of potassium (K+) channels to enhance neuronal firing during working memory. However, little is known about GCPII expression and function in the primate dlPFC, despite its relevance to inflammatory disorders. The present study used multiple label immunofluorescence and immunoelectron microscopy to localize GCPII in aging macaque dlPFC, and examined the effects of GCPII inhibition on dlPFC neuronal physiology and working memory function. GCPII was observed in astrocytes as expected, but also on neurons, including extensive expression in dendritic spines. Recordings in dlPFC from aged monkeys performing a working memory task found that iontophoresis of the GCPII inhibitors 2-MPPA or 2-PMPA markedly increased working memory-related neuronal firing and spatial tuning, enhancing neural representations. These beneficial effects were reversed by an mGluR2/3 antagonist, or by a cAMP-PKA activator, consistent with mGluR3 inhibition of cAMP-PKA-K+ channel signaling. Systemic administration of the brain penetrant inhibitor, 2-MPPA, significantly improved working memory performance without apparent side effects, with largest effects in the oldest monkeys. Taken together, these data endorse GCPII inhibition as a potential strategy for treating cognitive disorders associated with aging and/or neuroinflammation.


Assuntos
COVID-19 , Córtex Pré-Frontal Dorsolateral , Humanos , Animais , Haplorrinos , Macaca , Cognição , Glutamatos
5.
Mol Psychiatry ; 26(8): 3684-3700, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33319854

RESUMO

Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.


Assuntos
Sinalização do Cálcio , Córtex Pré-Frontal , Animais , Cálcio/metabolismo , Córtex Pré-Frontal Dorsolateral , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Visual Primário
6.
Proc Natl Acad Sci U S A ; 116(52): 26230-26238, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871209

RESUMO

Although mouse models of Alzheimer's disease (AD) have provided tremendous breakthroughs, the etiology of later onset AD remains unknown. In particular, tau pathology in the association cortex is poorly replicated in mouse models. Aging rhesus monkeys naturally develop cognitive deficits, amyloid plaques, and the same qualitative pattern and sequence of tau pathology as humans, with tangles in the oldest animals. Thus, aging rhesus monkeys can play a key role in AD research. For example, aging monkeys can help reveal how synapses in the prefrontal association cortex are uniquely regulated compared to the primary sensory cortex in ways that render them vulnerable to calcium dysregulation and tau phosphorylation, resulting in the selective localization of tau pathology observed in AD. The ability to assay early tau phosphorylation states and perform high-quality immunoelectron microscopy in monkeys is a great advantage, as one can capture early-stage degeneration as it naturally occurs in situ. Our immunoelectron microscopy studies show that phosphorylated tau can induce an "endosomal traffic jam" that drives amyloid precursor protein cleavage to amyloid-ß in endosomes. As amyloid-ß increases tau phosphorylation, this creates a vicious cycle where varied precipitating factors all lead to a similar phenotype. These data may help explain why circuits with aggressive tau pathology (e.g., entorhinal cortex) may degenerate prior to producing significant amyloid pathology. Aging monkeys therefore can play an important role in identifying and testing potential therapeutics to protect the association cortex, including preventive therapies that are challenging to test in humans.

7.
Am J Primatol ; 83(11): e23254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960505

RESUMO

Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.


Assuntos
Doença de Alzheimer , Doenças dos Roedores , Envelhecimento , Doença de Alzheimer/etiologia , Animais , Encéfalo , Modelos Animais de Doenças , Camundongos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo
8.
Alzheimers Dement ; 17(1): 115-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075193

RESUMO

The etiology of the common, sporadic form of Alzheimer's disease (sAD) is unknown. We hypothesize that tau pathology within select projection neurons with susceptible microenvironments can initiate sAD. This postulate rests on extensive data demonstrating that in human brains tau pathology appears about a decade before the formation of Aß plaques (Aßps), especially targeting glutamate projection neurons in the association cortex. Data from aging rhesus monkeys show abnormal tau phosphorylation within vulnerable neurons, associated with calcium dysregulation. Abnormally phosphorylated tau (pTau) on microtubules traps APP-containing endosomes, which can increase Aß production. As Aß oligomers increase abnormal phosphorylation of tau, this would drive vicious cycles leading to sAD pathology over a long lifespan, with genetic and environmental factors that may accelerate pathological events. This hypothesis could be testable in the aged monkey association cortex that naturally expresses characteristics capable of promoting and sustaining abnormal tau phosphorylation and Aß production.


Assuntos
Doença de Alzheimer/patologia , Tauopatias/patologia , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Encéfalo/patologia , Humanos , Macaca mulatta , Pessoa de Meia-Idade
9.
Alzheimers Dement ; 17(6): 920-932, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33829643

RESUMO

INTRODUCTION: The etiology of sporadic Alzheimer's disease (AD) requires non-genetically modified animal models. METHODS: The relationship of tau phosphorylation to calcium-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) dysregulation was analyzed in aging rhesus macaque dorsolateral prefrontal cortex (dlPFC) and rat primary cortical neurons using biochemistry and immuno-electron microscopy. The influence of calcium leak from ryanodine receptors (RyRs) on neuronal firing and cognitive performance was examined in aged macaques. RESULTS: Aged monkeys naturally develop hyperphosphorylated tau, including AD biomarkers (AT8 (pS202/pT205) and pT217) and early tau pathology markers (pS214 and pS356) that correlated with evidence of increased calcium leak (pS2808-RyR2). Calcium also regulated early tau phosphorylation in vitro. Age-related reductions in the calcium-binding protein, calbindin, and in phosphodiesterase PDE4D were seen within dlPFC pyramidal cell dendrites. Blocking RyRs with S107 improved neuronal firing and cognitive performance in aged macaques. DISCUSSION: Dysregulated calcium signaling confers risk for tau pathology and provides a potential therapeutic target.


Assuntos
Cálcio/metabolismo , Disfunção Cognitiva/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Macaca mulatta , Proteínas tau/metabolismo , Envelhecimento/patologia , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Humanos , Masculino , Neurônios/metabolismo , Fosforilação , Córtex Pré-Frontal/patologia , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina
10.
J Neurosci ; 39(14): 2722-2734, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30755491

RESUMO

Noradrenergic (NE) α1-adrenoceptors (α1-ARs) contribute to arousal mechanisms and play an important role in therapeutic medications such as those for the treatment of posttraumatic stress disorder (PTSD). However, little is known about how α1-AR stimulation influences neuronal firing in the dorsolateral prefrontal cortex (dlPFC), a newly evolved region that is dysfunctional in PTSD and other mental illnesses. The current study examined the effects of α1-AR manipulation on neuronal firing in dlPFC of rhesus monkeys performing a visuospatial working memory task, focusing on the "delay cells" that maintain spatially tuned information across the delay period. Iontophoresis of the α1-AR antagonist HEAT (2-{[ß-(4-hydroxyphenyl)ethyl]aminomethyl}-1-tetralone) had mixed effects, reducing firing in a majority of neurons but having nonsignificant excitatory effects or no effect in remaining delay cells. These data suggest that endogenous NE has excitatory effects in some delay cells under basal conditions. In contrast, the α1-AR agonists phenylephrine and cirazoline suppressed delay cell firing and this was blocked by coadministration of HEAT. These results indicate an inverted-U dose response for α1-AR actions, with mixed excitatory actions under basal conditions and suppressed firing with high levels of α1-AR stimulation such as with stress exposure. Immunoelectron microscopy revealed α1-AR expression presynaptically in axons and axon terminals and postsynaptically in spines, dendrites, and astrocytes. It is possible that α1-AR excitatory effects arise from presynaptic excitation of glutamate release, whereas postsynaptic actions suppress firing through calcium-protein kinase C opening of potassium channels on spines. The latter may predominate under stressful conditions, leading to loss of dlPFC regulation during uncontrollable stress.SIGNIFICANCE STATEMENT Noradrenergic stimulation of α1-adrenoceptors (α1-ARs) is implicated in posttraumatic stress disorder (PTSD) and other mental disorders that involve dysfunction of the prefrontal cortex, a brain region that provides top-down control. However, the location and contribution of α1-ARs to prefrontal cortical physiology in primates has received little attention. This study found that α1-ARs are located near prefrontal synapses and that α1-AR stimulation has mixed effects under basal conditions. However, high levels of α1-AR stimulation, as occur with stress, suppress neuronal firing. These findings help to explain why we lose top-down control under conditions of uncontrollable stress when there are high levels of noradrenergic release in brain and why blocking α1-AR, such as with prazosin, may be helpful in the treatment of PTSD.


Assuntos
Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Desempenho Psicomotor/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino , Norepinefrina/farmacologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/efeitos dos fármacos
11.
J Neuroinflammation ; 17(1): 8, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906973

RESUMO

BACKGROUND: Cognitive impairment in schizophrenia, aging, and Alzheimer's disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination. C1q is thought to be expressed predominately by microglia, but its expression in primate dlPFC has never been examined. The current study assayed C1q levels in aging primate dlPFC and rat medial PFC (mPFC) and used immunoelectron microscopy (immunoEM), immunoblotting, and co-immunoprecipitation (co-IP) to reveal the precise anatomical distribution and interactions of C1q. METHODS: Age-related changes in C1q levels in rhesus macaque dlPFC and rat mPFC were examined using immunoblotting. High-spatial resolution immunoEM was used to interrogate the subcellular localization of C1q in aged macaque layer III dlPFC and aged rat layer III mPFC. co-IP techniques quantified protein-protein interactions for C1q and proteins associated with excitatory and inhibitory synapses in macaque dlPFC. RESULTS: C1q levels were markedly increased in the aged macaque dlPFC. Ultrastructural localization found the expected C1q localization in glia, including those ensheathing synapses, but also revealed extensive localization within neurons. C1q was found near synapses, within terminals and in spines, but was also observed in dendrites, often near abnormal mitochondria. Similar analyses in aging rat mPFC corroborated the findings in rhesus macaques. C1q protein increasingly associated with PSD95 with age in macaque, consistent with its synaptic localization as evidenced by EM. CONCLUSIONS: These findings reveal novel, intra-neuronal distribution patterns for C1q in the aging primate cortex, including evidence of C1q in dendrites. They suggest that age-related changes in the dlPFC may increase C1q expression and synaptic tagging for glial phagocytosis, a possible mechanism for age-related degeneration.


Assuntos
Envelhecimento/metabolismo , Complemento C1q/análise , Complemento C1q/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Animais , Macaca mulatta , Neurônios/ultraestrutura , Córtex Pré-Frontal/ultraestrutura , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 36(45): 11411-11417, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911743

RESUMO

Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic complexes is a commonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Transtornos Mentais/metabolismo , Sinapses/metabolismo , Citoesqueleto de Actina/patologia , Animais , Encéfalo/patologia , Espinhas Dendríticas/patologia , Humanos , Transtornos Mentais/patologia , Sinapses/patologia , Transmissão Sináptica
13.
Cereb Cortex ; 25(8): 2295-305, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24610118

RESUMO

Cortical pyramidal neuron activity is regulated in part through inhibitory inputs mediated by GABAA receptors. The subunit composition of these receptors confers distinct functional properties. Thus, developmental shifts in subunit expression will likely influence the characteristics of pyramidal cell firing and the functional maturation of processes that depend on these neurons. We used laser microdissection and PCR to quantify postnatal developmental changes in the expression of GABAA receptor subunits (α1, α2, α5, ß2, γ2, and δ) in layer 3 pyramidal cells of monkey prefrontal cortex, which are critical for working memory. To determine the specificity of these changes, we examined glutamate receptor subunits (AMPA Glur1 and NMDA Grin1) and conducted the same analyses in layer 5 pyramidal cells. Expression of GABAA receptor subunit mRNAs changed substantially, whereas glutamate receptor subunit changes were modest over postnatal development. Some transcripts (e.g., GABAA α1) progressively increased from birth until adulthood, whereas others (e.g., GABAA α2) declined with age. Changes in some transcripts were present in only one layer (e.g., GABAA δ). The development of GABAA receptor subunit expression in primate prefrontal pyramidal neurons is protracted and subunit- and layer-specific. These trajectories might contribute to the molecular basis for the maturation of working memory.


Assuntos
Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Envelhecimento/metabolismo , Animais , Feminino , Microdissecção e Captura a Laser , Macaca mulatta , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Cereb Cortex ; 25(11): 4076-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24904071

RESUMO

Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development.


Assuntos
Potenciais Pós-Sinápticos Inibidores/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Macaca mulatta , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Piridazinas/farmacologia , Sinapses/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , ômega-Agatoxina IVA/farmacologia
15.
Front Cell Neurosci ; 18: 1371213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682091

RESUMO

Background: Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective: Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods: The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results: There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion: The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.

16.
Mol Neurobiol ; 61(4): 2430-2445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889366

RESUMO

The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.


Assuntos
Memória de Curto Prazo , Células Piramidais , Animais , Ratos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Memória de Curto Prazo/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo
17.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915595

RESUMO

Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.

18.
JAMA Psychiatry ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776078

RESUMO

Importance: The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders. Objective: To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices. Design, Setting, and Participants: The design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques. Main Outcomes and Measures: Outcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments. Results: Layer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C (Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by ß1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or ß1-adrenoceptor antagonist protected working memory from stress. Conclusions and Relevance: The layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants in CACNA1C were associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.

20.
Blood ; 117(12): 3363-9, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21212284

RESUMO

The human T-lymphotropic virus type I (HTLV-I) causes a chronic inflammatory disorder of the central nervous system termed HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-I encodes a protein known to activate several host-signaling pathways involved in inflammation, such as the nuclear factor-κB (NF-κB). The contribution of the NF-κB pathway to the pathogenesis of HAM/TSP, however, has not been fully defined. We show evidence of canonical NF-κB activation in short-term cultures of peripheral blood mononuclear cells (PBMCs) from subjects with HAM/TSP. NF-κB activation was closely linked to HTLV-I viral protein expression. The NF-κB activation in HAM/TSP PBMCs was reversed by a novel small-molecule inhibitor that demonstrates potent and selective NF-κB antagonist activity. Inhibition of NF-κB activation led to a reduction in the expression of lymphocyte activation markers and resulted in reduced cytokine signaling in HAM/TSP PBMCs. Furthermore, NF-κB inhibition led to a reduction in spontaneous lymphoproliferation, a key ex vivo correlate of the immune activation associated with HAM/TSP. These results indicate that NF-κB activation plays a critical upstream role in the immune activation of HAM/TSP, and identify the NF-κB pathway as a potential target for immunomodulation in HAM/TSP.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fatores Imunológicos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Paraparesia Espástica Tropical/imunologia , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cicloexanonas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/fisiologia , NF-kappa B/metabolismo , Paraparesia Espástica Tropical/sangue , Paraparesia Espástica Tropical/tratamento farmacológico , Paraparesia Espástica Tropical/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA