Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
PLoS Biol ; 21(3): e3002028, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930682

RESUMO

A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Demência Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , RNA , Proteínas do Tecido Nervoso/metabolismo
3.
Hum Mol Genet ; 26(17): 3421-3431, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637276

RESUMO

Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD.


Assuntos
Proteína C9orf72/genética , Idoso , Esclerose Lateral Amiotrófica/genética , Autopsia , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Estudos de Casos e Controles , Expansão das Repetições de DNA/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Neurodegenerativas/genética , RNA Polimerase II , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA , Ativação Transcricional
4.
Ann Neurol ; 82(1): 139-146, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628244

RESUMO

As potential treatments for C9ORF72-associated amyotrophic lateral sclerosis (c9ALS) approach clinical trials, the identification of prognostic biomarkers for c9ALS becomes a priority. We show that levels of phosphorylated neurofilament heavy chain (pNFH) in cerebrospinal fluid (CSF) predict disease status and survival in c9ALS patients, and are largely stable over time. Moreover, c9ALS patients exhibit higher pNFH levels, more rapid disease progression, and shorter survival after disease onset than ALS patients without C9ORF72 expansions. These data support the use of CSF pNFH as a prognostic biomarker for clinical trials, which will increase the likelihood of successfully developing a treatment for c9ALS. Ann Neurol 2017;82:139-146.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72 , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Análise de Sobrevida , Adulto Jovem
5.
Acta Neuropathol ; 130(6): 863-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437865

RESUMO

The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.


Assuntos
Cerebelo/metabolismo , Expansão das Repetições de DNA , Lobo Frontal/metabolismo , Proteínas/genética , Proteínas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Estudos de Associação Genética , Variação Genética , Heterozigoto , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Regiões Promotoras Genéticas , Análise de Sobrevida , Bancos de Tecidos
6.
Acta Neuropathol ; 130(4): 559-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26350237

RESUMO

Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers.


Assuntos
Cerebelo/metabolismo , Expansão das Repetições de DNA , Proteínas/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72 , Cerebelo/patologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Estudos de Coortes , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Demência Frontotemporal/complicações , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Heterozigoto , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Córtex Motor/patologia , Doença dos Neurônios Motores/complicações , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
7.
Acta Neuropathol ; 128(4): 505-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173361

RESUMO

The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Expansão das Repetições de DNA/genética , Estresse do Retículo Endoplasmático/fisiologia , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Proteína C9orf72 , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Células Cultivadas , Colagogos e Coleréticos/farmacologia , Expansão das Repetições de DNA/imunologia , Embrião de Mamíferos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células HEK293 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Estrutura Secundária de Proteína , Proteínas/química
8.
PLoS One ; 19(4): e0298080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635657

RESUMO

Inclusions containing TAR DNA binding protein 43 (TDP-43) are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). One of the disease-specific features of TDP-43 inclusions is the aberrant phosphorylation of TDP-43 at serines 409/410 (pS409/410). Here, we developed rabbit monoclonal antibodies (mAbs) that specifically detect pS409/410-TDP-43 in multiple model systems and FTD/ALS patient samples. Specifically, we identified three mAbs (26H10, 2E9 and 23A1) from spleen B cell clones that exhibit high specificity and sensitivity to pS409/410-TDP-43 peptides in an ELISA assay. Biochemical analyses revealed that pS409/410 of recombinant TDP-43 and of exogenous 25 kDa TDP-43 C-terminal fragments in cultured HEK293T cells are detected by all three mAbs. Moreover, the mAbs detect pS409/410-positive TDP-43 inclusions in the brains of FTD/ALS patients and mouse models of TDP-43 proteinopathy by immunohistochemistry. Our findings indicate that these mAbs are a valuable resource for investigating TDP-43 pathology both in vitro and in vivo.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/patologia , Anticorpos Monoclonais , Células HEK293 , Proteínas de Ligação a DNA/genética
11.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232138

RESUMO

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Assuntos
Demência Frontotemporal , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética
12.
Acta Neuropathol ; 126(6): 895-905, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24166615

RESUMO

Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Histonas/genética , Proteínas/genética , Adulto , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Metilação de DNA , Epigênese Genética , Degeneração Lobar Frontotemporal/metabolismo , Expressão Gênica , Histonas/metabolismo , Humanos , Proteínas/metabolismo
13.
Acta Neuropathol ; 126(6): 829-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129584

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , RNA Nuclear/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72 , Cerebelo/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA , Feminino , Lobo Frontal/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Secundária de Proteína , Proteínas/genética , RNA Nuclear/genética , Medula Espinal/metabolismo , Medula Espinal/patologia
14.
Front Cell Dev Biol ; 11: 1251551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614226

RESUMO

Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.

15.
Cell Rep ; 42(8): 112822, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471224

RESUMO

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Humanos , Esclerose Lateral Amiotrófica/patologia , DNA Helicases/metabolismo , Grânulos de Estresse , Expansão das Repetições de DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Demência Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , Proteínas de Choque Térmico/metabolismo , RNA/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
16.
Front Cell Dev Biol ; 10: 863089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386195

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.

17.
Science ; 378(6615): 94-99, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201573

RESUMO

Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Proteínas de Ligação a DNA , Demência Frontotemporal , Proteínas Serina-Treonina Quinases , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
18.
iScience ; 25(11): 105272, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36213006

RESUMO

Blood neurofilament light chain (NFL) is proposed to serve as an estimate of disease severity in hospitalized patients with coronavirus disease 2019 (COVID-19). We show that NFL concentrations in plasma collected from 880 patients with COVID-19 within 5 days of hospital admission were elevated compared to controls. Higher plasma NFL associated with worse clinical outcomes including the need for mechanical ventilation, intensive care, prolonged hospitalization, and greater functional disability at discharge. No difference in the studied clinical outcomes between black/African American and white patients was found. Finally, vaccination associated with less disability at time of hospital discharge. In aggregate, our findings support the utility of measuring NFL shortly after hospital admission to estimate disease severity and show that race does not influence clinical outcomes caused by COVID-19 assuming equivalent access to care, and that vaccination may lessen the degree of COVID-19-caused disability.

19.
Front Cell Dev Biol ; 9: 809942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096836

RESUMO

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (C9orf72), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice. These findings suggest that pharmacologically reducing HDAC6 levels could be of therapeutic value in c9FTD/ALS.

20.
Cell Rep ; 34(11): 108843, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730588

RESUMO

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Anticorpos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Degeneração Corticobasal/patologia , Humanos , Doença de Pick/patologia , Agregados Proteicos , Fatores de Tempo , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA