Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 579(7800): 581-585, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103173

RESUMO

Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gordura Intra-Abdominal/imunologia , Caracteres Sexuais , Linfócitos T Reguladores/imunologia , Androgênios/metabolismo , Animais , Quimiocina CCL2/imunologia , Cromatina/genética , Feminino , Regulação da Expressão Gênica , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-33/imunologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , RNA-Seq , Receptores CCR2/metabolismo , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Linfócitos T Reguladores/metabolismo , Transcrição Gênica
2.
Nature ; 587(7834): 460-465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149301

RESUMO

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Assuntos
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinogênio/biossíntese , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Átrios do Coração/citologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Receptores da Calcitonina/metabolismo
3.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36194667

RESUMO

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Assuntos
NF-kappa B , Humanos , Animais , Camundongos
4.
Curr Osteoporos Rep ; 21(6): 825-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37707757

RESUMO

PURPOSE OF REVIEW: To summarise the evidence regarding the effects of gender-affirming hormone therapy (GAHT) on bone health in transgender people, to identify key knowledge gaps and how these gaps can be addressed using preclinical rodent models. RECENT FINDINGS: Sex hormones play a critical role in bone physiology, yet there is a paucity of research regarding the effects of GAHT on bone microstructure and fracture risk in transgender individuals. The controlled clinical studies required to yield fracture data are unethical to conduct making clinically translatable preclinical research of the utmost importance. Novel genetic and surgical preclinical models have yielded significant mechanistic insight into the roles of sex steroids on skeletal integrity. Preclinical models of GAHT have the potential inform clinical approaches to preserve skeletal integrity and prevent fractures in transgender people undergoing GAHT. This review highlights the key considerations required to ensure the information gained from preclinical models of GAHT are informative.


Assuntos
Fraturas Ósseas , Pessoas Transgênero , Humanos , Densidade Óssea , Hormônios
6.
Eur J Haematol ; 105(3): 247-254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32311143

RESUMO

BACKGROUND: Androgens function through DNA and non-DNA binding-dependent signalling of the androgen receptor (AR). How androgens promote erythropoiesis is not fully understood. DESIGN AND METHODS: To identify the androgen signalling pathway, we treated male mice lacking the second zinc finger of the DNA-binding domain of the AR (ARΔZF2 ) with non-aromatizable 5α-dihydrotestosterone (5α-DHT) or aromatizable testosterone. To distinguish direct hematopoietic and non-hematopoietic mechanisms, we performed bone marrow reconstitution experiments. RESULTS: In wild-type mice, 5α-DHT had greater erythroid activity than testosterone, which can be aromatized to estradiol. The erythroid response in wild-type mice following 5α-DHT treatment was associated with increased serum erythropoietin (EPO) and its downstream target erythroferrone, and hepcidin suppression. 5α-DHT had no erythroid activity in ARΔZF2 mice, proving the importance of DNA binding by the AR. Paradoxically, testosterone, but not 5α-DHT, suppressed EPO levels in ARΔZF2 mice, suggesting testosterone following aromatization may oppose the erythroid-stimulating effects of androgens. Female wild-type mice reconstituted with ARΔZF2 bone marrow cells remained responsive to 5α-DHT. In contrast, ARΔZF2 mice reconstituted with female wild-type bone marrow cells showed no response to 5α-DHT. CONCLUSION: Erythroid promoting effects of androgens are mediated through DNA binding-dependent actions of the AR in non-hematopoietic cells, including stimulating EPO expression.


Assuntos
Androgênios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eritropoese , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Biomarcadores , Eritropoese/efeitos dos fármacos , Eritropoetina/sangue , Feminino , Regulação da Expressão Gênica , Ferro/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica , Receptores Androgênicos/genética , Transdução de Sinais
7.
J Physiol ; 592(7): 1705-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24492842

RESUMO

The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague-Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13-15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension.


Assuntos
Barorreflexo , Hipertensão/etiologia , Bulbo/fisiopatologia , Inibição Neural , Obesidade/complicações , Transdução de Sinais , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Arterial , Colecistocinina/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Inibição Neural/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptor de Colecistocinina A/genética , Receptor de Colecistocinina A/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
8.
Endocr Res ; 39(3): 130-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24467187

RESUMO

Androgens (testosterone and dihydrotestosterone) acting via the androgen receptor (AR) are required for male sexual differentiation, and also regulate the development of many other tissues including muscle, fat and bone. We previously generated an AR(lox) mouse line with exon 3 of the AR gene targeted by loxP sites. The deletion of exon 3 is in-frame, so only the DNA binding-dependent actions of the AR are deleted, but non-DNA binding-dependent actions are retained. This line also contained an antibiotic resistance selection cassette, neomycin (neo) in intron 3, which was also flanked by loxP sites. Hemizygous AR(lox) male mice demonstrated a phenotype of hyperandrogenization, with increased mass of androgen-dependent tissues. We hypothesized that this hyperandrogenization was likely to be due to the presence of the neo cassette. In this study, we have generated an AR(lox) neo-negative mouse line, using the EIIa-cre deleter mouse line to remove the neo cassette. Hemizygous AR(lox) neo-negative male mice have a normal phenotype, with normal body mass and normal mass of androgen-dependent tissues including the testis, seminal vesicles, kidney, spleen, heart and retroperitoneal fat. This neo-negative exon 3-targeted mouse line is the only floxed AR mouse line available to study the DNA binding-dependent actions of the AR in a tissue-specific manner, and is suitable for investigation in all tissues. This study demonstrates the importance of removing the selection cassette, which can potentially alter the phenotype of floxed mouse lines even in the absence of detectable effects on target gene expression.


Assuntos
Técnicas de Inativação de Genes/métodos , Receptores Androgênicos/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neomicina/metabolismo , Fenótipo , Receptores Androgênicos/metabolismo
9.
Bone Res ; 12(1): 1, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212599

RESUMO

The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown. To address this knowledge gap, we developed a mouse model to simulate male-to-female transition in human adolescents in whom puberty is first arrested by using gonadotrophin-releasing hormone analogs with subsequent estradiol treatment. Puberty was suppressed by orchidectomy in male mice at 5 weeks of age. At 3 weeks post-surgery, male-to-female mice were treated with a high dose of estradiol (~0.85 mg) by intraperitoneal silastic implantation for 12 weeks. Controls included intact and orchidectomized males at 3 weeks post-surgery, vehicle-treated intact males, intact females and orchidectomized males at 12 weeks post-treatment. Compared to male controls, orchidectomized males exhibited decreased peak bone mass accrual and a decreased maximal force the bone could withstand prior to fracture. Estradiol treatment in orchidectomized male-to-female mice compared to mice in all control groups was associated with an increased cortical thickness in the mid-diaphysis, while the periosteal circumference increased to a level that was intermediate between intact male and female controls, resulting in increased maximal force and stiffness. In trabecular bone, estradiol treatment increased newly formed trabeculae arising from the growth plate as well as mineralizing surface/bone surface and bone formation rate, consistent with the anabolic action of estradiol on osteoblast proliferation. These data support the concept that skeletal integrity can be preserved and that long-term fractures may be prevented in trans girls treated with GnRHa and a sufficiently high dose of GAHT. Further study is needed to identify an optimal dose of estradiol that protects the bone without adverse side effects.


Assuntos
Osso Esponjoso , Estradiol , Adolescente , Masculino , Humanos , Feminino , Camundongos , Animais , Estradiol/farmacologia , Osso e Ossos , Identidade de Gênero , Modelos Animais de Doenças
10.
Bone ; 186: 117143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866125

RESUMO

The effects of gender affirming hormone therapy (GAHT) on bone microarchitecture and fracture risk in adult transgender women is unclear. To investigate the concept that skeletal integrity and strength in trans women may be improved by treatment with a higher dose of GAHT than commonly prescribed, we treated adult male mice with a sustained, high dose of estradiol. Adult male mice at 16 weeks of age were administered ~1.3 mg estradiol by silastic implant, implanted intraperitoneally, for 12 weeks. Controls included vehicle treated intact females and males. High-dose estradiol treatment in males stimulated the endocortical deposition of bone at the femoral mid-diaphysis, increasing cortical thickness and bone area. This led to higher stiffness, maximum force, and the work required to fracture the bone compared to male controls, while post-yield displacement was unaffected. Assessment of the material properties of the bone showed an increase in both elastic modulus and ultimate stress in the estradiol treated males. Treatment of male mice with high dose estradiol was also anabolic for trabecular bone, markedly increasing trabecular bone volume, number and thickness in the distal metaphysis which was accompanied by an increase in the histomorphometric markers of bone remodelling, mineralizing surface/bone surface, bone formation rate and osteoclast number. In conclusion, a high dose of estradiol is anabolic for cortical and trabecular bone in a male to female transgender mouse model, increasing both stiffness and strength. These findings suggest that increasing the current dose of GAHT administered to trans women, while considering other potential adverse effects, may be beneficial to preserving their bone microstructure and strength.


Assuntos
Estradiol , Animais , Masculino , Estradiol/farmacologia , Estradiol/sangue , Feminino , Camundongos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea/efeitos dos fármacos , Anabolizantes/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais , Microtomografia por Raio-X
11.
Transgenic Res ; 21(4): 885-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22160436

RESUMO

Conditional gene inactivation using the Cre/loxP system has lead to significant advances in our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature, that Cre transgenic mice may themselves have a phenotype. In the following study we describe the bone phenotype of a commonly used Cre transgenic mouse line to study osteoblasts, the Osx-GFP::Cre (Osx-Cre) mice. Cortical and trabecular bone parameters were determined in the femurs of Osx-Cre mice at 6 and 12 weeks of age by microtomography (µCT). At 6 weeks of age, Osx-Cre mice had reduced body weight by 22% (P < 0.0001) and delayed cortical bone expansion and accrual, characterized by decreases in periosteal circumference by 7% (P < 0.05) and cortical thickness by 11% (P < 0.01), compared to wild type controls. Importantly, the cortical bone phenotype of the skeletally immature Osx-Cre mice at 6 weeks of age could be accounted for by their low body weight. The delayed weight gain and cortical growth of Osx-Cre mice was overcome by 12 weeks of age, with no differences observed between Osx-Cre and wild type controls. In conclusion, Osx-Cre expressing mice display a delayed growth phenotype in the absence of doxycycline treatment, evidenced by decreased cortical bone expansion and accrual at 6 weeks of age, as an indirect result of decreased body weight. While this delay in growth is overcome by adulthood at 12 weeks of age, caution together with appropriate data analysis must be considered when assessing the experimental data from skeletally immature Cre/loxP knockout mice generated using the Osx-Cre mouse line to avoid misinterpretation.


Assuntos
Desenvolvimento Ósseo , Integrases , Camundongos Transgênicos , Fatores de Transcrição , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Fêmur/diagnóstico por imagem , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/fisiologia , Fenótipo , Radiografia , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Obes Rev ; 23(6): e13429, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35083843

RESUMO

Obesity is associated with hypothalamic-pituitary-testicular axis dysregulation in males. Here, we summarize recent evidence derived from clinical trials and studies in preclinical animal models regarding the role of androgen receptor (AR) signaling in the pathophysiology of males with obesity. We also discuss therapeutic strategies targeting the AR for the treatment of obesity and their limitations and provide insight into the future research necessary to advance this field.


Assuntos
Receptores Androgênicos , Testosterona , Animais , Humanos , Masculino , Obesidade/etiologia , Testosterona/uso terapêutico
13.
J Mol Endocrinol ; 69(1): 269-283, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388795

RESUMO

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.


Assuntos
Resistência à Insulina , Animais , Medula Óssea/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Sobrepeso , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células-Tronco/metabolismo , Testosterona , Aumento de Peso
14.
J Endocrinol ; 249(1): 31-41, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33638943

RESUMO

The physiological role of calcitonin, and its receptor, the CTR (or Calcr), has long been debated. We previously provided the first evidence for a physiological role of the CTR to limit maternal bone loss during lactation in mice by a direct action on osteocytes to inhibit osteocytic osteolysis. We now extend these findings to show that CTR gene expression is upregulated two- to three-fold in whole bone of control mice at the end of pregnancy (E18) and lactation (P21) compared to virgin controls. This was associated with an increase in osteoclast activity evidenced by increases in osteoclast surface/bone surface and Dcstamp gene expression. To investigate the mechanism by which the CTR inhibits osteocytic osteolysis, in vivo acidification of the osteocyte lacunae during lactation (P14 days) was assessed using a pH indicator dye. A lower pH was observed in the osteocyte lacunae of lactating Global-CTRKOs compared to controls and was associated with an increase in the gene expression of ATPase H+ transporting V0 subunit D2 (Atp6v0d2) in whole bone of Global-CTRKOs at the end of lacation (P21). To determine whether the CTR is required for the replacement of mineral within the lacunae post-lactation, lacunar area was determined 3 weeks post-weaning. Comparison of the largest 20% of lacunae by area did not differ between Global-CTRKOs and controls post-lactation. These results provide evidence for CTR activation to inhibit osteocytic osteolysis during lactation being mediated by regulating the acidity of the lacunae microenvironment, whilst the CTR is dispensable for replacement of bone mineral within lacunae by osteocytes post-lactation.


Assuntos
Lactação/fisiologia , Osteócitos/fisiologia , Receptores da Calcitonina/fisiologia , Animais , Osso e Ossos/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteólise/prevenção & controle , Gravidez , Receptores da Calcitonina/deficiência , Receptores da Calcitonina/genética , Regulação para Cima/fisiologia
15.
Dev Neurobiol ; 81(4): 411-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33864349

RESUMO

Neuronal activity after nerve injury can enhance axon regeneration and the restoration of function. The mechanism for this enhancement relies in part on hormone receptors, and we previously demonstrated that systemic androgen receptor antagonism blocked the effect of exercise or electrical stimulation on enhancing axon regeneration after nerve injury in both sexes. Here, we tested the hypothesis that the site of this androgen receptor signaling is both neuronal and involves the classical, genomic signaling pathway. In vivo, dorsal root ganglion neurons successfully regenerate in response to activity-dependent neuronal activation, and conditional deletion of the DNA-binding domain of the androgen receptor in adults blocks this effect in males and females. Motoneurons in males and females also respond in this manner, but we also observed a sex difference. In vitro, cultured sensory dorsal root ganglion neurons respond to androgens via traditional androgen receptor signaling mechanisms leading to enhanced neurite growth and did not respond to a testosterone conjugate that is unable to cross the cell membrane. Given our previous observation of a requirement for activity-dependent androgen receptor signaling to promote regeneration in both sexes, we interpret our results to indicate that genomic neuronal androgen receptor signaling is required for activity-dependent axon regeneration in both sexes.


Assuntos
Axônios , Regeneração Nervosa , Androgênios/metabolismo , Androgênios/farmacologia , Axônios/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Humanos , Masculino , Regeneração Nervosa/fisiologia , Receptores Androgênicos/metabolismo , Células Receptoras Sensoriais/metabolismo
16.
Endocrine ; 73(2): 463-471, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864607

RESUMO

PURPOSE: The aim of this study was to determine early weight loss-associated changes in subcutaneous abdominal white adipose tissue (WAT) gene expression in obese men with lowered serum testosterone by RNA next-generation sequencing. METHODS: Fourteen men, mean age (IQR) 51.6 years (43.4-54.5), BMI 38.3 kg/m2 (34.6-40.8) and total testosterone 8.4 nmol/L (7.5-9.5) provided subcutaneous WAT samples at baseline and after 2 weeks of a very low energy diet. RESULTS: Body weight loss was similar in participants receiving testosterone (n = 6), -5.27 kg [95% CI -6.17; -4.26], and placebo (n = 8), -4.57 kg [95% CI -6.10; -3.55], p = 0.86. In placebo-treated men, of the 14,410 genes expressed in subcutaneous WAT, four genes, Angiopoietin-like 4, Semaphorin 3 G, Neuropilin 2 and Angiopoietin 4, were upregulated (adjusted false discovery rate P < 0.05). In an exploratory analysis comparing men receiving testosterone and placebo, the most-upregulated gene in the testosterone group (exploratory p < 0.0005) was the neuropeptide y receptor 2. CONCLUSIONS: In obese men, dieting is associated with upregulation of WAT-expressed Angiopoietin-like 4, a secreted protein that regulates lipid metabolism, Semaphorin 3 G, a proposed adipocyte differentiation factor and secreted adipokine, and its receptor Neuropilin 2, as well as Angiopoietin 4, a vascular integrity factor. In an exploratory analysis, testosterone was associated with the upregulation of neuropeptide y receptor 2, a receptor involved in appetite regulation. Further studies are needed to confirm these observations and their potential biological implications. TRIAL REGISTRATION: clinicaltrials.gov, Identifier NCT01616732, Registration date: June 8, 2012.


Assuntos
Tecido Adiposo Branco , Testosterona , Gordura Abdominal , Pré-Escolar , Expressão Gênica , Humanos , Lactente , Masculino , Obesidade/tratamento farmacológico
17.
Sci Rep ; 11(1): 13766, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215813

RESUMO

Sexual dimorphism in gene regulation, including DNA methylation, is the main driver of sexual dimorphism in phenotypes. However, the questions of how and when sex shapes DNA methylation remain unresolved. Recently, using mice with different combinations of genetic and phenotypic sex, we identified sex-associated differentially methylated regions (sDMRs) that depended on the sex phenotype. Focusing on a panel of validated sex-phenotype dependent male- and female-biased sDMRs, we tested the developmental dynamics of sex bias in liver methylation and the impacts of mutations in the androgen receptor, estrogen receptor alpha, or the transcriptional repressor Bcl6 gene. True hermaphrodites that carry both unilateral ovaries and contralateral testes were also tested. Our data show that sex bias in methylation either coincides with or follows sex bias in the expression of sDMR-proximal genes, suggesting that sex bias in gene expression may be required for demethylation at certain sDMRs. Global ablation of AR, ESR1, or a liver-specific loss of BCL6, all alter sDMR methylation, whereas presence of both an ovary and a testis delays the establishment of male-type methylation levels in hermaphrodites. Moreover, the Bcl6-LKO shows dissociation between expression and methylation, suggesting a distinct role of BCL6 in demethylation of intragenic sDMRs.


Assuntos
Metilação de DNA/genética , Receptor alfa de Estrogênio/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores Androgênicos/genética , Animais , Transtornos do Desenvolvimento Sexual/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Caracteres Sexuais , Sexismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
18.
Mol Neurobiol ; 58(10): 5369-5382, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34312771

RESUMO

Based upon its interactions with amyloid ß peptide (Aß), the amylin receptor, a class B G protein-coupled receptor (GPCR), is a potential modulator of Alzheimer's disease (AD) pathogenesis. However, past pharmacological approaches have failed to resolve whether activation or blockade of this receptor would have greater therapeutic benefit. To address this issue, we generated compound mice expressing a human amyloid precursor protein gene with familial AD mutations in combination with deficiency of amylin receptors produced by hemizygosity for the critical calcitonin receptor subunit of this heterodimeric GPCR. These compound transgenic AD mice demonstrated attenuated responses to human amylin- and Aß-induced depression of hippocampal long-term potentiation (LTP) in keeping with the genetic depletion of amylin receptors. Both the LTP responses and spatial memory (as measured with Morris water maze) in these mice were improved compared to AD mouse controls and, importantly, a reduction in both the amyloid plaque burden and markers of neuroinflammation was observed. Our data support the notion of further development of antagonists of the amylin receptor as AD-modifying therapies.


Assuntos
Doença de Alzheimer/genética , Aprendizagem em Labirinto/fisiologia , Receptores da Calcitonina/genética , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Memória Espacial/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores da Calcitonina/deficiência , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/deficiência
19.
J Steroid Biochem Mol Biol ; 210: 105857, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647520

RESUMO

Mature osteoclasts express the vitamin D receptor (VDR) and are able to respond to active vitamin D (1α, 25-dihydroxyvitamin D3; 1,25(OH)2D3) by regulating cell maturation and activity. However, the in vivo consequences of vitamin D signalling directly within functionally mature osteoclasts is only partially understood. To investigate the in vivo role of VDR in mature osteoclasts, conditional deletion of the VDR under control of the cathepsin K promoter (CtskCre/Vdr-/-), was assessed in 6 and 12-week-old mice, either under normal dietary conditions (NormCaP) or when fed a low calcium (0.03 %), low phosphorous (0.08 %) diet (LowCaP). Splenocytes from CtskCre/Vdr-/- mice were co-cultured with MLO-Y4 osteocyte-like cells to assess the effect on osteoclastogenesis. Six-week-old CtskCre/Vdr-/- mice demonstrated a 10 % decrease in vertebral bone volume (p < 0.05), which was associated with increased osteoclast size (p < 0.05) when compared to Vdrfl/fl control mice. Control mice fed a LowCaP diet exhibited extensive trabecular bone loss associated with increased osteoclast surface, number and size (p < 0.0001). Interestingly, CtskCre/Vdr-/- mice fed a LowCaP diet showed exacerbated loss of bone volume fraction (BV/TV%) and trabecular number (Tb.N), by a further 22 % and 21 %, respectively (p < 0.05), suggesting increased osteoclastic bone resorption activity with the loss of VDR in mature osteoclasts under these conditions. Co-culture of CtskCre/Vdr-/- splenocytes with MLO-Y4 cells increased resulting osteoclast numbers 2.5-fold, which were greater in nuclei density and exhibited increased resorption of dentine compared to osteoclasts derived from Vdrfl/fl splenocyte cultures. These data suggest that in addition to RANKL-mediated osteoclastogenesis, intact VDR signalling is required for the direct regulation of the differentiation and activity of osteoclasts in both in vivo and ex vivo settings.


Assuntos
Cálcio da Dieta/farmacologia , Osteoclastos/fisiologia , Osteoporose/etiologia , Receptores de Calcitriol/genética , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiopatologia , Cálcio/sangue , Catepsina K/genética , Catepsina K/metabolismo , Técnicas de Cocultura , Masculino , Camundongos Knockout , Camundongos Transgênicos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese , Fósforo/metabolismo , Receptores de Calcitriol/metabolismo , Microtomografia por Raio-X
20.
FASEB J ; 22(8): 2676-89, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18390925

RESUMO

To identify mechanisms of anabolic androgen action in muscle, we generated male and female genomic androgen receptor (AR) knockout (ARKO) mice, and characterized muscle mass, contractile function, and gene expression. Muscle mass is decreased in ARKO males, but normal in ARKO females. The levator ani muscle, which fails to develop in normal females, is also absent in ARKO males. Force production is decreased from fast-twitch ARKO male muscle, and slow-twitch muscle has increased fatigue resistance. Microarray analysis shows up-regulation of genes encoding slow-twitch muscle contractile proteins. Real-time PCR confirms that expression of genes encoding polyamine biosynthetic enzymes, ornithine decarboxylase (Odc1), and S-adenosylmethionine decarboxylase (Amd1), is reduced in ARKO muscle, suggesting androgens act through regulation of polyamine biosynthesis. Altered expression of regulators of myoblast progression from proliferation to terminal differentiation suggests androgens also promote muscle growth by maintaining myoblasts in the proliferate state and delaying differentiation (increased Cdkn1c and Igf2, decreased Itg1bp3). A similar pattern of gene expression is observed in orchidectomized male mice, during androgen withdrawal-dependent muscle atrophy. In conclusion, androgens are not required for peak muscle mass in females. In males, androgens act through the AR to regulate multiple gene pathways that control muscle mass, strength, and fatigue resistance.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiopatologia , Receptores Androgênicos/deficiência , Androgênios/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/patologia , Mioblastos Esqueléticos/patologia , Mioblastos Esqueléticos/fisiologia , Orquiectomia , Tamanho do Órgão , Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Caracteres Sexuais , Testículo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA