Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100189

RESUMO

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Assuntos
Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Glicólise , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Lipogênese , NADP/metabolismo , Via de Pentose Fosfato/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
3.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008641

RESUMO

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Trombospondina 1/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas do Citoesqueleto , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Estudos Prospectivos , Proteínas de Ligação a RNA/genética
4.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202605

RESUMO

It was thought until the 1990s that the eukaryotic translation machinery was unable to translate a circular RNA. However internal ribosome entry sites (IRESs) and m6A-induced ribosome engagement sites (MIRESs) were discovered, promoting 5' end-independent translation initiation. Today a new family of so-called "noncoding" circular RNAs (circRNAs) has emerged, revealing the pivotal role of 5' end-independent translation. CircRNAs have a strong impact on translational control via their sponge function, and form a new mRNA family as they are translated into proteins with pathophysiological roles. While there is no more doubt about translation of covalently closed circRNA, the linearity of canonical mRNA is only theoretical: it has been shown for more than thirty years that polysomes exhibit a circular form and mRNA functional circularization has been demonstrated in the 1990s by the interaction of initiation factor eIF4G with poly(A) binding protein. More recently, additional mechanisms of 3'-5' interaction have been reported, including m6A modification. Functional circularization enhances translation via ribosome recycling and acceleration of the translation initiation rate. This update of covalently and noncovalently closed circular mRNA translation landscape shows that RNA with circular shape might be the rule for translation with an important impact on disease development and biotechnological applications.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Proteínas de Ligação a Poli(A)/metabolismo
5.
Microb Cell Fact ; 18(1): 49, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857535

RESUMO

BACKGROUND: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1-C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. RESULTS: We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). CONCLUSIONS: Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Óleos de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ceras/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/genética
6.
Microb Cell Fact ; 18(1): 205, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767000

RESUMO

BACKGROUND: The sesquiterpenoid abscisic acid (ABA) is mostly known for regulating developmental processes and abiotic stress responses in higher plants. Recent studies show that ABA also exhibits a variety of pharmacological activities. Affordable and sustainable production will be required to utilize the compound in agriculture and as a potential pharmaceutical. Saccharomyces cerevisiae is an established workhorse for the biotechnological production of chemicals. In this study, we constructed and characterised an ABA-producing S. cerevisiae strain using the ABA biosynthetic pathway from Botrytis cinerea. RESULTS: Expression of the B. cinerea genes bcaba1, bcaba2, bcaba3 and bcaba4 was sufficient to establish ABA production in the heterologous host. We characterised the ABA-producing strain further by monitoring ABA production over time and, since the pathway contains two cytochrome P450 enzymes, by investigating the effects of overexpressing the native S. cerevisiae or the B. cinerea cytochrome P450 reductase. Both, overexpression of the native or heterologous cytochrome P450 reductase, led to increased ABA titres. We were able to show that ABA production was not affected by precursor or NADPH supply, which suggested that the heterologous enzymes were limiting the flux towards the product. The B. cinerea cytochrome P450 monooxygenases BcABA1 and BcABA2 were identified as pathway bottlenecks and balancing the expression levels of the pathway enzymes resulted in 4.1-fold increased ABA titres while reducing by-product formation. CONCLUSION: This work represents the first step towards a heterologous ABA cell factory for the commercially relevant sesquiterpenoid.


Assuntos
Ácido Abscísico , Vias Biossintéticas/genética , Botrytis/genética , Reguladores de Crescimento de Plantas/biossíntese , Saccharomyces cerevisiae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Fúngicos , Engenharia Metabólica/métodos , Reguladores de Crescimento de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Transgenes
7.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791615

RESUMO

The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Mensageiro/genética , Elementos de Resposta , Estresse Fisiológico/genética , Transativadores/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte , Humanos , Ligação Proteica , RNA Viral , Ribossomos/metabolismo
8.
FEMS Yeast Res ; 18(6)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897501

RESUMO

Production of triacylglycerols (TAGs) through microbial fermentation is an emerging alternative to plant and animal-derived sources. The yeast Saccharomyces cerevisiae is a preferred organism for industrial use but has natively a very poor capacity of TAG production and storage. Here, we engineered S. cerevisiae for accumulation of high TAG levels through the use of structural and physiological factors that influence assembly and biogenesis of lipid droplets. First, human and fungal perilipin genes were expressed, increasing TAG content by up to 36% when expressing the human perilipin gene PLIN3. Secondly, expression of the FIT2 homologue YFT2 resulted in a 26% increase in TAG content. Lastly, the genes ERD1 and PMR1 were deleted in order to induce an endoplasmic reticulum stress response and stimulate lipid droplet formation, increasing TAG content by 72% for Δerd1. These new approaches were implemented in previously engineered strains that carry high flux of fatty acid biosynthesis and conversion of acyl-CoA into TAGs, resulting in improvements of up to 138% over those high-producing strains without any substantial growth effects or abnormal cell morphology. We find that these approaches not only represent a significant improvement of S. cerevisiae for TAG production, but also highlight the importance of lipid droplet dynamics for high lipid accumulation in yeast.


Assuntos
Microbiologia Industrial/métodos , Gotículas Lipídicas/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Estresse do Retículo Endoplasmático/genética , Humanos , Proteínas Associadas a Gotículas Lipídicas/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/biossíntese
9.
J Ind Microbiol Biotechnol ; 45(7): 467-480, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29362972

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation through different companies, and conclude with future perspectives of this technology.


Assuntos
Biotecnologia , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação da Expressão Gênica , Engenharia Genética/métodos , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Edição de Genes , Patentes como Assunto
10.
Biotechnol Bioeng ; 114(5): 1025-1035, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27858995

RESUMO

Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2017;114: 1025-1035. © 2016 Wiley Periodicals, Inc.


Assuntos
Ésteres/metabolismo , Álcoois Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Ceras/metabolismo , Aciltransferases , Aldeído Oxirredutases , Animais , Abelhas/enzimologia , Abelhas/genética , Ésteres/química , Álcoois Graxos/química , Marinobacter/enzimologia , Marinobacter/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Ceras/química
11.
Microb Cell Fact ; 16(1): 46, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298224

RESUMO

BACKGROUND: Transcriptional reprogramming is a fundamental process of living cells in order to adapt to environmental and endogenous cues. In order to allow flexible and timely control over gene expression without the interference of native gene expression machinery, a large number of studies have focused on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene transcription start site. RESULTS: In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101 guide-RNA (gRNA) structures on a total of 14 different yeast promoters, we identified the best-performing combinations based on reporter assays. Though a larger number of gRNA-promoter combinations do not perturb gene expression, some gRNAs support expression perturbations up to ~threefold. The best-performing gRNAs were used for single and multiplex reprogramming strategies for redirecting flux related to isoprenoid production and optimization of TAG profiles. From these studies, we identified both constitutive and inducible multiplex reprogramming strategies enabling significant changes in isoprenoid production and increases in TAG. CONCLUSION: Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also identify a large number of gRNA positions in 14 native yeast target pomoters that do not affect expression, suggesting the need for further optimization of gRNA design tools and dCas9 engineering.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases/metabolismo , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Vias Biossintéticas/genética , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/genética , Regiões Promotoras Genéticas , Biologia Sintética/métodos , Terpenos/metabolismo , Triglicerídeos/metabolismo
12.
FEMS Yeast Res ; 15(1): 1-14, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25154295

RESUMO

Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.


Assuntos
Edição de Genes , Engenharia Genética , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Biologia Sintética , Endonucleases/metabolismo , Técnicas de Inativação de Genes , Recombinação Homóloga , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo
13.
FEMS Yeast Res ; 14(2): 238-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151867

RESUMO

Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out.


Assuntos
Cromossomos Fúngicos , Clonagem Molecular/métodos , Mutagênese Insercional , Saccharomyces cerevisiae/genética , Citometria de Fluxo , Expressão Gênica , Ordem dos Genes , Genes Reporter , Recombinação Homóloga , Plasmídeos/genética
14.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38782713

RESUMO

Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.


Assuntos
Técnicas Biossensoriais , Colorimetria , Saccharomyces cerevisiae , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Saccharomyces cerevisiae/metabolismo , Licopeno/metabolismo , Leveduras/isolamento & purificação , Leveduras/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito
15.
Appl Microbiol Biotechnol ; 97(8): 3343-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179620

RESUMO

In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 µg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.


Assuntos
Bacillus megaterium/metabolismo , Hexosiltransferases/biossíntese , Bacillus megaterium/genética , Biotecnologia/métodos , Carbono/metabolismo , Meios de Cultura/química , Frutose/metabolismo , Vetores Genéticos , Glicerol/metabolismo , Hexosiltransferases/genética , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Plasmídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Temperatura
16.
Bioprocess Biosyst Eng ; 36(12): 1829-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23653110

RESUMO

In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria.


Assuntos
Diamino Aminoácidos/metabolismo , Chromohalobacter/metabolismo , Fluidez de Membrana , Chromohalobacter/crescimento & desenvolvimento , Corantes Fluorescentes , Temperatura Alta , Osmose
17.
ACS Synth Biol ; 12(8): 2278-2289, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37486333

RESUMO

Directed evolution is a preferred strategy to improve the function of proteins such as enzymes that act as bottlenecks in metabolic pathways. Common directed evolution approaches rely on error-prone PCR-based libraries where the number of possible variants is usually limited by cellular transformation efficiencies. Targeted in vivo mutagenesis can advance directed evolution approaches and help to overcome limitations in library generation. In the current study, we aimed to develop a high-efficiency time-controllable targeted mutagenesis toolkit in the yeast Saccharomyces cerevisiae by employing the CRISPR/Cas9 technology. To that end, we fused the dCas9 protein with hyperactive variants of adenine and cytidine deaminases aiming to create an inducible CRISPR-based mutagenesis tool targeting a specific DNA sequence in vivo with extended editing windows and high mutagenesis efficiency. We also investigated the effect of guide RNA multiplexing on the mutagenesis efficiency both phenotypically and on the DNA level.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Mutagênese/genética , Mutagênese Sítio-Dirigida , Edição de Genes
18.
ACS Synth Biol ; 12(8): 2271-2277, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37486342

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, with its ability to target a specific DNA locus using guide RNAs (gRNAs), is particularly suited for targeted mutagenesis. The targeted diversification of nucleotides in Saccharomyces cerevisiae using a CRISPR-guided error-prone DNA polymerase─called yEvolvR─was recently reported. Here, we investigate the effect of multiplexed expression of gRNAs flanking a short stretch of DNA on reversion and mutation frequencies using yEvolvR. Phenotypic assays demonstrate that higher reversion frequencies are observed when expressing multiple gRNAs simultaneously. Next generation sequencing reveals a synergistic effect of multiple gRNAs on mutation frequencies, which is more pronounced in a mutant with a partially defective DNA mismatch repair system. Additionally, we characterize a galactose-inducible yEvolvR, which enables temporal control of mutagenesis. This study demonstrates that multiplex expression of gRNAs and induction of mutagenesis greatly improves the capabilities of yEvolvR for generation of genetic libraries in vivo.


Assuntos
Taxa de Mutação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , DNA , DNA Polimerase Dirigida por DNA/genética , RNA , Mutação
19.
Methods Mol Biol ; 2513: 39-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781199

RESUMO

Metabolic engineering of microbial cells is the discipline of optimizing microbial metabolism to enable and improve the production of target molecules ranging from biofuels and chemical building blocks to high-value pharmaceuticals. The advances in genetic engineering have eased the construction of highly engineered microbial strains and the generation of genetic libraries. Intracellular metabolite-responsive biosensors facilitate high-throughput screening of these libraries by connecting the levels of a metabolite of interest to a fluorescence output. Fluorescent-activated cell sorting (FACS) enables the isolation of highly fluorescent single cells and thus genotypes that produce higher levels of the metabolite of interest. Here, we describe a high-throughput screening method for recombinant yeast strain screening based on intracellular biosensors and FACS.


Assuntos
Técnicas Biossensoriais , Engenharia Metabólica , Técnicas Biossensoriais/métodos , Citometria de Fluxo/métodos , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
ACS Synth Biol ; 11(10): 3182-3189, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36223492

RESUMO

The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1ß dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.


Assuntos
Técnicas Biossensoriais , Fator 1 Induzível por Hipóxia , Humanos , Hipóxia , Descoberta de Drogas , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA