Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2308433121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437528

RESUMO

The green-up of vegetation in spring brings a pulse of food resources that many animals track during migration. However, green-up phenology is changing with climate change, posing an immense challenge for species that time their migrations to coincide with these resource pulses. We evaluated changes in green-up phenology from 2002 to 2021 in relation to the migrations of 150 Western-Hemisphere bird species using eBird citizen science data. We found that green-up phenology has changed within bird migration routes, and yet the migrations of most species align more closely with long-term averages of green-up than with current conditions. Changing green-up strongly influenced phenological mismatches, especially for longer-distance migrants. These results reveal that bird migration may have limited flexibility to adjust to changing vegetation phenology and emphasize the mounting challenge migratory animals face in following en route resources in a changing climate.


Assuntos
Aves , Ciência do Cidadão , Animais , Mudança Climática , Frequência Cardíaca , Estações do Ano
2.
Ecol Appl ; 34(2): e2930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941497

RESUMO

Wetland ecosystems are vital for maintaining global biodiversity, as they provide important stopover sites for many species of migrating wetland-associated birds. However, because weather determines their hydrologic cycles, wetlands are highly vulnerable to effects of climate change. Although changes in temperature and precipitation resulting from climate change are expected to reduce inundation of wetlands, few efforts have been made to quantify how these changes will influence the availability of stopover sites for migratory wetland birds. Additionally, few studies have evaluated how climate change will influence interannual variability or the frequency of extremes in wetland availability. For spring and fall bird migration in seven ecoregions in the south-central Great Plains of North America, we developed predictive models associating abundance of inundated wetlands with a suite of weather and land cover variables. We then used these models to generate predictions of wetland inundation at the end of the century (2069-2099) under future climate change scenarios. Climate models predicted the average number of inundated wetlands will likely decline during both spring and fall migration periods, with declines being greatest in the eastern ecoregions of the southern Great Plains. However, the magnitude of predicted declines varied considerably across climate models and ecoregions, with uncertainty among climate models being greatest in the High Plains ecoregion. Most ecoregions also were predicted to experience more-frequent extremely dry years (i.e., years with extremely low wetland abundances), but the projected change in interannual variability of wetland inundation was relatively small and varied across ecoregions and seasons. Because the south-central Great Plains represents an important link along the migratory routes of many wetland-dependent avian species, future declines in wetland inundation and more frequent periods of only a few wetlands being inundated will result in an uncertain future for migratory birds as they experience reduced availability of wetland stopover habitat across their migration pathways.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Mudança Climática , Biodiversidade , Aves
3.
Environ Manage ; 71(2): 379-392, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36474092

RESUMO

Little guidance is available to assist wetland managers in developing climate adaptation plans. To facilitate development of recommendations for adaptation strategies, it is essential to first determine if or how wetland managers are addressing these challenges. We used an online survey to solicit feedback from wetland managers and biologists in the Southern Great Plains of North America to gain information on perceptions of wetland managers regarding climate change; assess how the effects of climate change are being addressed through management; and identify barriers to implementing climate change adaptation. The majority of wetland managers (63%) agreed they are currently experiencing effects of climate change in wetlands, and most respondents (76%) reported that changes in the timing of water availability throughout the year was the most likely impact. Managers reported using a diversity of approaches in managing for changing precipitation, with management of native and invasive plant species being the two most common practices. Lack of funding and personnel were the most commonly identified factors limiting manager's response to changing precipitation patterns. In addition, >50% of managers indicated uncertainty about the effects of climate change on wetlands as a barrier to management, which may relate to limited access to peer-reviewed science. While most of the management practices reported were short-term measures and may not reflect long-term adaptation for climate change, the fact that many managers are considering climate change in their management suggests that there is considerable opportunities to continue developing capacity for climate change adaptation in the region.


Assuntos
Mudança Climática , Áreas Alagadas , Incerteza , Água , Espécies Introduzidas
4.
Ecol Appl ; 32(3): e2543, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080784

RESUMO

Movement and selection are inherently linked behaviors that form the foundation of a species' space-use patterns. Anthropogenic development in natural ecosystems can result in a variety of behavioral responses that can involve changes in either movement (speed or direction of travel) or selection (resources used), which in turn may cause population-level consequences including loss of landscape connectivity. Understanding how a species alters these different behaviors in response to human activity is essential for effective conservation. In this study, we investigated the effects of anthropogenic development such as roads, power lines and oil wells on the greater prairie-chicken (Tympanuchus cupido) movement and selection behaviors in the post-nesting and non-breeding season. Our first objective was to assess using integrated step selection analysis (iSSA) if greater prairie-chickens altered their movement behaviors or their selection patterns when encountering oil wells, power lines, or roads. Our second objective was to determine whether prairie-chickens avoided crossing linear features such as roads or power lines by comparing the number of crossing events in greater prairie-chicken movement tracks to the number of movements that crossed these features in simulated movement tracks. Based on the iSSA analysis, we found that greater prairie-chickens avoided oil wells, power lines, and roads in both seasons, and altered their rate of movement when near anthropogenic structures. However, changes in speed varied by season, with prairie-chickens increasing their movement rates in the post-nesting season when near to development and decreasing movement rates in the non-breeding season. Furthermore, prairie-chickens crossed roads and power lines at much lower rates than expected. These changes in behavior can result in habitat loss for greater prairie-chickens, as well as the potential loss of landscape connectivity. By considering both movement and selection, we were able to develop an ecological understanding of how increasing human activity may influence the space use of this species of conservation concern. Furthermore, this research provides insight into the decision-making processes by animals when they encounter anthropogenic development.


Assuntos
Galinhas , Ecossistema , Animais , Galinhas/fisiologia , Conservação dos Recursos Naturais , Pradaria
5.
J Therm Biol ; 95: 102791, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33454032

RESUMO

Temperature is increasingly recognized as an important component of wildlife habitat. Temperature is particularly important for avian nest sites, where extreme temperatures can influence adult behavior, embryonic development, and survival. For species inhabiting arid and semiarid climates, such as the scaled quail (Callipepla squamata), frequent exposure to extreme temperatures may increase the importance of the nest microclimate. Limited data suggest that scaled quail respond to temperature when selecting nest sites, and they are also known to respond to the presence of surface water and shrub cover on the landscape, two resources which may mitigate thermal stress. To better understand the role of temperature in nest site selection and survival, and to evaluate how other landscape resources may benefit nesting quail, we investigated nest site characteristics of scaled quail in southeastern New Mexico, USA. During the breeding seasons of 2018 and 2019 we located nests, monitored nest fate, and recorded thermal and vegetation characteristics at three spatial scales: the nest bowl, the nest microsite (area within 10 m of the nest bowl), and the landscape. We found that nest bowls moderated temperature relative to both the surrounding microsite and the broader landscape, remaining almost 5 °C cooler on average than the surrounding microsite at mid-day. Nest bowls also had taller, greater cover of vegetation compared to both the surrounding microsites and the landscape. Despite apparent selection for cooler temperatures and taller vegetation, these characteristics demonstrated a weak relationship with nest survival. Rather, nest survival was positively influenced by proximity to surface water and honey mesquite (Prosopis glandulosa), with survival decreasing with increasing distance from these features. Although the mechanism for this relationship is unclear, our results support the importance of temperature for nest site selection of ground-nesting birds in semiarid landscapes, and suggest further exploration of landscape-level sources of thermal mitigation.


Assuntos
Comportamento de Nidação , Codorniz/fisiologia , Termotolerância , Distribuição Animal , Animais , Ecossistema
6.
Glob Chang Biol ; 25(8): 2691-2702, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025464

RESUMO

Global climate change is increasing the frequency and intensity of weather extremes, including severe droughts in many regions. Drought can impact organisms by inhibiting reproduction, reducing survival and abundance, and forcing range shifts. For birds, considering temporal scale by averaging drought-related variables over different time lengths (i.e., temporal grains) captures different hydrologic attributes which may uniquely influence food supplies, vegetation greenness/structure, and other factors affecting populations. However, studies examining drought impacts on birds often assess a single temporal grain without considering that different species have different life histories that likely determine the temporal grain of their drought response. Furthermore, while drought is known to influence bird abundance and drive between-year range shifts, less understood is whether it causes within-range changes in species distributions. Our objectives were to (a) determine which temporal grain of drought (if any) is most related to bird presence/absence and whether this response is species specific; and (b) assess whether drought alters bird distributions by quantifying probability of local colonization and extinction as a function of drought intensity. We used North American Breeding Bird Survey data collected over 16 years, generalized linear mixed models, and dynamic occupancy models to meet these objectives. Different bird species responded to drought at different temporal grains, with most showing the strongest signal at annual or near-annual grains. For all drought-responsive species, increased drought intensity at any temporal grain always correlated with decreased occupancy. Additionally, colonization/extinction analyses indicated that one species, the dickcissel (Spiza americana), is more likely to colonize novel areas within the southern/core portion of its range during drought. Considering drought at different temporal grains, along with hydrologic attributes captured by each grain, may better reveal mechanisms behind drought impacts on birds and other organisms, and therefore improve understanding of how global climate change impacts species and the landscapes they inhabit.


Assuntos
Aves , Secas , Animais , Mudança Climática , Dinâmica Populacional , Especificidade da Espécie
7.
J Therm Biol ; 80: 37-44, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30784486

RESUMO

Temperature affects every organism on Earth and has been argued to be one of the most critical factors influencing organisms' ecology and evolution. Most organisms are susceptible to landscape temperature ranges that exceed their thermal tolerance. As a result, the distribution of landscape features that mitigate thermal extremes can affect movement and space use of organisms. Using Rio Grande wild turkey (Meleagris gallopavo intermedia) as a model species, we measured black bulb temperature throughout the diurnal period and identified vegetation characteristics at wild turkey locations and random landscape locations. We observed that the thermal landscape was highly heterogeneous with temperature varying up to 52 °C at a given ambient temperature. Vegetation type strongly influenced temperature across space during daily peak heating, with taller vegetation types (woody vegetation >2 m) having mean temperatures up to 8.95 °C cooler than the remainder of the landscape. However, these cooler vegetation types were uncommon, only accounting for 8.2% of the landscape. Despite the rarity of tall woody cover, wild turkey showed strong selection for this vegetation type particularly during peak daily heating with 74.9% of locations within 18 m of tree cover. Not only did wild turkey alter space use across time relative to temperature variation, but they also altered movement. We found that on the hottest days (≥35 °C), wild turkeys decreased movement by three fold during peak heating, while movement on cooler days (<30 °C) was uniform. Collectively, our data provide evidence that space use and movement for large avian species can be influenced by the thermal environment, and that the thermal environment is an important component of habitat for a species.


Assuntos
Regulação da Temperatura Corporal , Temperatura , Perus/fisiologia , Animais , Comportamento Animal , Feminino , Microclima , Movimento , Plantas
8.
J Therm Biol ; 74: 140-148, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801620

RESUMO

Behavioral adjustments and parental decisions during reproduction can influence the thermal environment at nests, yet our understanding into how environmental factors (i.e., temperature and precipitation) constrain an adult's ability to balance self-maintenance and incubation demands is limited. To expand our understanding of how species respond to environmental factors, we investigated the reproductive ecology of two ground-nesting species (northern bobwhite [Colinus virginianus] and scaled quail [Callipepla squamata]) in a region (i.e., the Southern Great Plains) prone to thermal variability (i.e., extreme hot and cold temperatures). Specifically, our objective was to examine how temperature and precipitation directly influenced behavioral adjustments (i.e., off-bout duration, frequency, and nest attentiveness) and parental decisions (i.e., nest site selection), and indirectly influenced nest fate. Overall, we found that parents chose to nest in sites that were significantly cooler in temperature than randomly selected sites, and parents further altered the thermal environment experienced by embryos through incubation behavior. Daily precipitation and average ambient temperature and/or their interaction best predicted incubation behaviors, yet each species differed in the timing (i.e., morning vs. evening), frequency, and duration of off-bouts. Furthermore, successful nests were associated with cooler nest site temperatures for bobwhite and warmer nest site temperatures for scaled quail. Our finding of relatively stable (35.5 °C) incubation temperature for developing embryos of both species suggests that ground-nesting birds are able to regulate microclimate through behavioral adjustments and parental decisions even under extreme temperature fluctuations. Nevertheless, the ability for a ground-nesting species to effectively modify behavioral adjustments and decisions may be altered during long periods of enhanced physiological and environmental stress.


Assuntos
Comportamento Animal , Comportamento de Nidação , Codorniz/fisiologia , Temperatura , Animais , Microclima , Chuva , Reprodução
9.
Glob Chang Biol ; 23(5): 1832-1846, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633847

RESUMO

Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad-scale patterns of abiotic and biotic conditions affect organisms' distributions and population fluctuations, discrete events may be important drivers of space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently, a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species (Colinus virginianus; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 to 38 °C) through a maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (<-15 °C and >35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6%, respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily a habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are average and broad-scale conditions as typically measured in ecological studies.


Assuntos
Aves , Comportamento de Nidação , Animais , Ecossistema , Dinâmica Populacional , Temperatura
10.
Ecol Appl ; 27(7): 2234-2244, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28736847

RESUMO

Disturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories. We assessed the response of a non-migratory ground-dwelling bird to disturbance (i.e., prescribed fire) and environmental stochasticity over the course of a 4-yr period, which spanned years of historic drought and record rainfall. Specifically, we investigated the nesting ecology of Northern Bobwhite (Colinus virginianus; hereafter Bobwhite) to illuminate possible avenues by which individuals respond to dynamic landscape patterns during a critical reproductive stage (i.e., nesting) in a mixed-grass shrubland in western Oklahoma, USA. We found that Bobwhites exhibited extreme plasticity in nest substrate use among time since fire categories (TSF) and subsequently maintained high nest survival (e.g., 57-70%). Bobwhites were opportunistic in nest substrate use among TSF categories (i.e., 72% of nest sites in shrubs in 0-12 months post fire compared to 71% in herbaceous vegetation in >36 months post fire), yet nesting decisions were first filtered by similar structural components (i.e., vertical and horizontal cover) within the vicinity of nest sites regardless of TSF category. Despite being a non-migratory and comparatively less mobile ground-nesting bird species, Bobwhites adjusted to dynamic vegetation mosaics on a fire-prone landscape under stochastic climatic conditions that culminated in stable and high nest survival. Broadly, our findings provide a unique depiction of organism response strategies to fire at scales relevant to a critical life-stage, a topic that has been previously understudied and poorly understood. We also demonstrate how doing so can better inform conservation practices aimed at restoring fire regimes on grassland and shrubland landscapes.


Assuntos
Colinus/fisiologia , Ecossistema , Incêndios , Comportamento de Nidação , Reprodução , Animais , Feminino , Longevidade , Oklahoma
11.
Ecol Appl ; 27(6): 1805-1814, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28464361

RESUMO

Fire is a disturbance process that maintains the structure and function of grassland ecosystems while sustaining grassland biodiversity. Conversion of grasslands to other land uses coupled with altered disturbance regimes has greatly diminished the habitat available to many grassland-dependent species. These changes have been linked to declines in breeding bird populations, but may also be critical for migrating bird populations such as those shorebird species that depend on mesic grasslands during migration. We examined migratory shorebird use of burned grasslands in the southern Great Plains of North America using DISTANCE sampling to estimate and compare bird densities across recently burned and not recently burned landscapes (1-5 yr post fire). We conducted two surveys per week for 8-10 weeks along a 54-km route starting at the end of March and concluding in mid-May during 2014-2015. We encountered 2,509 total shorebirds in recently burned areas compared to 130 individuals in areas that were unburned. Fire was a major attractant for our three focal species with American Golden-plover (Pluvialis dominica), Upland Sandpiper (Bartramia longicauda), and Killdeer (Charadrius vociferus) densities of 20.48, 11.09, and 26.09 birds/km2 in burned areas compared with 0.00, 1.27, and 0.92 birds/km2 in unburned areas, respectively. This research illustrates the importance of burned grassland for migrating shorebirds, a phenomenon that has largely gone unreported previously. Generally, these findings add to a body of knowledge that demonstrates the value of managing grasslands with historic disturbances that vary over space and time. The application of these findings should improve decision-making for shorebird conservation and provides evidence that prescribed fire planning should include consideration for breeding, transient, and non-breeding populations that vary in their temporal use of the landscape.


Assuntos
Biodiversidade , Charadriiformes , Conservação dos Recursos Naturais , Pradaria , Migração Animal , Animais , Incêndios , Oklahoma
12.
Med J Aust ; 200(6): 334-8, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24702091

RESUMO

UNLABELLED: OBJECTIVES To assess the effectiveness of three, four and five doses of acellular pertussis vaccine against pertussis notification for children aged 1 - < 4 years and 5 - < 12 years, and the effectiveness of three doses of acellular pertussis vaccine against pertussis hospitalisation for children aged 1 - < 4 years. DESIGN, SETTING AND PARTICIPANTS: A population-based retrospective study of children aged 1 - < 12 years residing in Queensland, Australia, during 2009 and 2010. Routinely collected notification, hospitalisation, testing and vaccination data were used to describe notification rates and testing patterns and to assess vaccine effectiveness (VE) by the screening method. MAIN OUTCOME MEASURES: VE against pertussis notification for children aged 1 - < 4 years and 5 - < 12 years, by birth year, and VE against pertussis hospitalisation for children aged 1 - < 4 years. RESULTS: 1961 notifications and 29 hospitalisations were included in the VE calculations. VE point estimates against pertussis notification and hospitalisation in children aged 1 - < 4 years were similar in 2009 and 2010, and ranged between 83.5% and 89.4%. VE point estimates against notification among children aged 5 - < 12 years were between 71.2% and 87.7% in 2009, and between 34.7% and 70.3% in 2010. The numbers of pertussis tests performed for children, particularly polymerase chain reaction (PCR) tests, increased between 2009 and 2010. CONCLUSIONS: Acellular pertussis vaccine provided good protection within the first years of priming, but this waned as age increased. Changes in pertussis testing behaviour, because of increases in PCR use and awareness, may have contributed to increased pertussis notification rates and lower estimates of VE against notification owing to identification of milder disease.


Assuntos
Epidemias , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Distribuição por Idade , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Notificação de Doenças/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Humanos , Esquemas de Imunização , Lactente , Modelos Logísticos , Queensland/epidemiologia , Estudos Retrospectivos , Vacinação/métodos , Vacinas Acelulares/administração & dosagem , Coqueluche/diagnóstico , Coqueluche/epidemiologia
13.
Ecol Evol ; 13(2): e9830, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844669

RESUMO

Recent declines in eastern wild turkeys (Meleagris gallopavo silvestris) have prompted increased interest in management and research of this important game species. However, the mechanisms underlying these declines are unclear, leaving uncertainty in how best to manage this species. Foundational to effective management of wildlife species is understanding the biotic and abiotic factors that influence demographic parameters and the contribution of vital rates to population growth. Our objectives for this study were to (1) conduct a literature review to collect all published vital rates for eastern wild turkey over the last 50 years, (2) perform a scoping review of the biotic and abiotic factors that have been studied relative to wild turkey vital rates and highlight areas that require additional research, and (3) use the published vital rates to populate a life-stage simulation analysis (LSA) and identify the vital rates that make the greatest contribution to population growth. Based on published vital rates for eastern wild turkey, we estimated a mean asymptotic population growth rate (λ) of 0.91 (95% CI = 0.71, 1.12). Vital rates associated with after-second-year (ASY) females were most influential in determining population growth. Survival of ASY females had the greatest elasticity (0.53), while reproduction of ASY females had lower elasticity (0.21), but high process variance, causing it to explain a greater proportion of variance in λ. Our scoping review found that most research has focused on the effects of habitat characteristics at nest sites and the direct effects of harvest on adult survival, while research on topics such as disease, weather, predators, or anthropogenic activity on vital rates has received less attention. We recommend that future research take a more mechanistic approach to understanding variation in wild turkey vital rates as this will assist managers in determining the most appropriate management approach.

14.
Ecol Evol ; 13(7): e10348, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37496760

RESUMO

Arthropod consumption provides amino acids to invertebrates and vertebrates alike, but not all amino acids in arthropods may be digestible as some are bound in the exoskeleton. Consumers may not be able to digest exoskeleton in significant amounts or avoid it entirely (e.g., extraoral digestion). Hence, measures that do not separate digestible amino acids from those in exoskeleton may not accurately represent the amino acids available to consumers. Additionally, arthropods are taxonomically diverse, and it remains unclear if taxonomic differences also reflect differences in amino acid availability. Thus, we tested: (1) if there were consistent differences in the content and balance of amino acids between the digestible tissue and exoskeleton of arthropods and (2) if arthropod Orders differ in amino acid content and balance. We measured the amino acid content (mg/100 mg dry mass) and balance (mg/100 mg protein) of whole bodies and exoskeleton of a variety of arthropods using acid hydrolysis. Overall, there was higher amino acid content in digestible tissue. There were also significant differences in the amino acid balance of proteins in digestible tissue and exoskeleton. Amino acid content and balance also varied among Orders; digestible tissues of Hemiptera contained more of some essential amino acids than other Orders. These results demonstrate that arthropod taxa vary in amino acid content, which could have implications for prey choice by insectivores. In addition, exoskeleton and digestible tissue content differ in arthropods, which means that whole body amino acid content of an arthropod is not necessarily a predictor of amino acid intake of a predator that feeds on that arthropod.

15.
PLoS One ; 17(5): e0266785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584125

RESUMO

Globally, migration phenologies of numerous avian species have shifted over the past half-century. Despite North American waterfowl being well researched, published data on shifts in waterfowl migration phenologies remain scarce. Understanding shifts in waterfowl migration phenologies along with potential drivers is critical for guiding future conservation efforts. Therefore, we utilized historical (1955-2008) nonbreeding waterfowl survey data collected at 21 National Wildlife Refuges in the mid- to lower portion of the Central Flyway to summarize changes in spring and autumn migration phenology. We examined changes in the timing of peak abundance from survey data at monthly intervals for each refuge and species (or species group; n = 22) by year and site-specific temperature for spring (Jan-Mar) and autumn (Oct-Dec) migration periods. For spring (n = 187) and autumn (n = 194) data sets, 13% and 9% exhibited statistically significant changes in the timing of peak migration across years, respectively, while the corresponding numbers for increasing temperatures were 4% and 9%. During spring migration, ≥80% of significant changes in the timing of spring peak indicated advancements, while 67% of significant changes in autumn peak timing indicated delays both across years and with increasing temperatures. Four refuges showed a consistent pattern across species of advancing spring migration peaks over time. Advancements in spring peak across years became proportionally less common among species with increasing latitude, while delays in autumn peak with increasing temperature became proportionally more common. Our study represents the first comprehensive summary of changes in spring and autumn migration phenology for Central Flyway waterfowl and demonstrates significant phenological changes during the latter part of the twentieth century.


Assuntos
Migração Animal , Mudança Climática , Animais , Aves , América do Norte , Estações do Ano
16.
Ecol Evol ; 12(12): e9586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514548

RESUMO

Animal movement patterns are affected by complex interactions between biotic and abiotic landscape conditions, and these patterns are being altered by weather variability associated with a changing climate. Some animals, like the American plains bison (Bison bison L.; hereafter, plains bison), are considered keystone species, thus their response to weather variability may alter ecosystem structure and biodiversity patterns. Many movement studies of plains bison and other ungulates have focused on point-pattern analyses (e.g., resource-selection) that have provided information about where these animals move, but information about when or why these animals move is limited. For example, information surrounding the influence of weather on plains bison movement in response to weather is limited but has important implications for their conservation in a changing climate. To explore how movement distance is affected by weather patterns and drought, we utilized 12-min GPS data from two of the largest plains bison herds in North America to model their response to weather and drought parameters using generalized additive mixed models. Distance moved was best predicted by air temperature, wind speed, and rainfall. However, air temperature best explained the variation in distance moved compared to any other single parameter we measured, predicting a 48% decrease in movement rates above 28°C. Moreover, severe drought (as indicated by 25-cm depth soil moisture) better predicted movement distance than moderate drought. The strong influence of weather and drought on plains bison movements observed in our study suggest that shifting climate and weather will likely affect plains bison movement patterns, further complicating conservation efforts for this wide-ranging keystone species. Moreover, changes in plains bison movement patterns may have cascading effects for grassland ecosystem structure, function, and biodiversity. Plains bison and grassland conservation efforts need to be proactive and adaptive when considering the implications of a changing climate on bison movement patterns.

17.
Med J Aust ; 194(10): 525-9, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21644900

RESUMO

OBJECTIVE: To describe the epidemiology of infectious syphilis among Aboriginal and Torres Strait Islander (Indigenous) people in Australia. DESIGN AND SETTING: We assessed trends in national infectious syphilis notification rates from 2005 to 2009 using Poisson regression, with a focus on geographic and demographic differences by Indigenous status. We compared Indigenous and non-Indigenous rate ratios over the study period and summarised the annual changes (summary rate ratio). MAIN OUTCOME MEASURES: Crude notification rates and summary rate ratios by Indigenous status, jurisdiction, sex, age group and area of residence. RESULTS: From 2005 to 2009, in the Indigenous population, there was a substantial decline in the notification rate for infectious syphilis nationally; as well as in the following subgroups: females, 15-29 year olds, and people living in outer regional and remote areas in the Northern Territory and Queensland. In contrast, there was a significant (P < 0.001) upward trend in the notification rate in the non-Indigenous population nationally; as well as in males, in people aged 20 years and over, and in residents of metropolitan and regional areas, New South Wales, Queensland, South Australia, Victoria and Western Australia. The highest summary rate ratios were seen in remote/very remote areas (86.33; 95% CI, 57.45-129.74), in 15-19 year olds (64.65; 95% CI, 51.12-81.78), in females (24.59; 95% CI, 19.73-30.65), and in Western Australia (23.89; 95% CI, 19.82-28.82). CONCLUSION: These data demonstrate that Australia has two distinct patterns of infectious syphilis: a substantially declining occurrence in Indigenous remote communities and an increasing incidence in males residing in urban and regional areas. Given the decline in notification rates in Indigenous remote communities, now might be the right time to move toward eliminating infectious syphilis from Indigenous communities.


Assuntos
Havaiano Nativo ou Outro Ilhéu do Pacífico/estatística & dados numéricos , Sífilis/etnologia , Adolescente , Adulto , Austrália/epidemiologia , Feminino , Humanos , Masculino , Sífilis/prevenção & controle , Adulto Jovem
18.
Ecol Evol ; 11(1): 427-442, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437440

RESUMO

Arthropods are abundant and diverse animals in many terrestrial food webs. In western Oklahoma, some shrublands are interspersed with discrete, dense thickets of tall, woody vegetation, known as mottes. Some of these shrublands are managed with prescribed burning. The goal of this study was to examine whether prescribed burning interacted with habitat type (i.e., shrubland versus mottes) to affect ground-dwelling arthropod communities. Arthropods were collected in pitfall traps at four sampling locations in relation to mottes; in the center of mottes, and three plot location in shrublands; 1 m, 15 m, and 50 m away from the edge of the motte. There were three treatment levels for burning: one year postburn (burned in dormant months of 2017), two years postburn (burned in dormant months of 2016), and unburned (burned in dormant season of 2014 and prior). There were no significant interactions between prescribed burning and habitat type. Mottes had a different community of arthropods compared with the surrounding shrubland. Mottes also had lower overall abundance, but a higher diversity of arthropods. In terms of fires, arthropod communities one year after burning were different from those two or more years after burning. There was no effect of burning on overall arthropod abundance, but plots that were one year since burning had significantly lower diversity compared with plots that were two or more years postburn. The results of this study suggest that both fire and mottes can independently facilitate heterogeneity in arthropod communities, but they do not appear to interact with one another.

19.
Ecol Evol ; 11(24): 17774-17785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003638

RESUMO

Insectivores gain macronutrients and elements from consuming arthropod prey, but must also deal with indigestible components (i.e., exoskeleton) of prey. For example, avian chicks (e.g., northern bobwhites; Colinus virginianus) have limited gut space, and ingesting prey with relatively higher proportions of indigestible components may impact assimilation efficiency, growth, and survival. The ability of insectivores to choose higher quality prey would depend on prey taxa varying consistently in nutritional content. We tested whether there were consistent differences among taxonomic orders of arthropod prey in their macronutrient (protein and lipid), elemental (C and N), and exoskeleton content. We used northern bobwhite chicks as our focal insectivore and focused on their potential prey as a case study. We also tested the influence of indigestible exoskeleton on the measurement of macronutrient content and the ability of elemental content to predict macronutrients. We found large and consistent variation in macronutrient and elemental content between arthropod orders. Some orders had consistently high protein content and low exoskeleton content (i.e., Araneae) and are likely higher quality prey for insectivores. Abundant orders common in the diets of insectivores, like Hymenoptera and Coleoptera, had high exoskeleton content and low protein content. We also found support for the ability of elements to predict macronutrients and found that metabolizable (i.e., exoskeleton removed) elemental content better predicted macronutrient content. A better understanding of arthropod nutrient content is critical for elucidating the role of spatial and temporal variation in prey communities in shaping the growth and survival of insectivores.

20.
Ecol Evol ; 11(18): 12714-12727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594533

RESUMO

Quantifying resource selection (an organism's disproportionate use of available resources) is essential to infer habitat requirements of a species, develop management recommendations, predict species responses to changing conditions, and improve our understanding of the processes that underlie ecological patterns. Because study sites, even within the same region, can differ in both the amount and the arrangement of cover types, our objective was to determine whether proximal sites can yield markedly different resource selection results for a generalist bird, northern bobwhite (Colinus virginianus). We used 5 years of telemetry locations and newly developed land cover data at two, geographically distinct but relatively close sites in the south-central semi-arid prairies of North America. We fit a series of generalized linear mixed models and used an information-theoretic model comparison approach to identify and compare resource selection patterns at each site. We determined that the importance of different cover types to northern bobwhite is site-dependent on relatively similar and nearby sites. Specifically, whether bobwhite selected for shrub cover and whether they strongly avoided trees, depended on the study site in focus. Additionally, the spatial scale of selection was nearly an order of magnitude different between the cover types. Our study demonstrates that-even for one of the most intensively studied species in the world-we may oversimplify resource selection by using a single study site approach. Managing the trade-offs between practical, generalized conclusions and precise but complex conclusions is one of the central challenges in applied ecology. However, we caution against setting recommendations for broad extents based on information gathered at small extents, even for a generalist species at adjacent sites. Before extrapolating information to areas beyond the data collected, managers should account for local differences in the availability, arrangement, and scaling of resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA