Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465618

RESUMO

The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited, at present, by the sluggish water oxidation reaction. Single-atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms toward designing high-performance water oxidation catalysts. Here, using operando X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir5.3+) in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environment of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir0.1/Ni9Fe SAC) via a unique in situ cryogenic-photochemical reduction method that delivers an overpotential of 183 mV at 10 mA ⋅ cm-2 and retains its performance following 100 h of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO2 catalysts. These findings open the avenue toward an atomic-level understanding of the oxygen evolution of catalytic centers under in operando conditions.

2.
J Am Chem Soc ; 143(2): 588-592, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33382947

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) using Cu-based catalysts holds great potential for producing valuable multi-carbon products from renewable energy. However, the chemical and structural state of Cu catalyst surfaces during the CO2RR remains a matter of debate. Here, we show the structural evolution of the near-surface region of polycrystalline Cu electrodes under in situ conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and X-ray diffraction (GIXRD). The in situ GIXAS reveals that the surface oxide layer is fully reduced to metallic Cu before the onset potential for CO2RR, and the catalyst maintains the metallic state across the potentials relevant to the CO2RR. We also find a preferential surface reconstruction of the polycrystalline Cu surface toward (100) facets in the presence of CO2. Quantitative analysis of the reconstruction profiles reveals that the degree of reconstruction increases with increasingly negative applied potentials, and it persists when the applied potential returns to more positive values. These findings show that the surface of Cu electrocatalysts is dynamic during the CO2RR, and emphasize the importance of in situ characterization to understand the surface structure and its role in electrocatalysis.

3.
J Synchrotron Radiat ; 28(Pt 3): 919-923, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949999

RESUMO

In situ characterization of electrochemical systems can provide deep insights into the structure of electrodes under applied potential. Grazing-incidence X-ray diffraction (GIXRD) is a particularly valuable tool owing to its ability to characterize the near-surface structure of electrodes through a layer of electrolyte, which is of paramount importance in surface-mediated processes such as catalysis and adsorption. Corrections for the refraction that occurs as an X-ray passes through an interface have been derived for a vacuum-material interface. In this work, a more general form of the refraction correction was developed which can be applied to buried interfaces, including liquid-solid interfaces. The correction is largest at incidence angles near the critical angle for the interface and decreases at angles larger and smaller than the critical angle. Effective optical constants are also introduced which can be used to calculate the critical angle for total external reflection at the interface. This correction is applied to GIXRD measurements of an aqueous electrolyte-Pd interface, demonstrating that the correction allows for the comparison of GIXRD measurements at multiple incidence angles. This work improves quantitative analysis of d-spacing values from GIXRD measurements of liquid-solid systems, facilitating the connection between electrochemical behavior and structure under in situ conditions.

4.
Phys Chem Chem Phys ; 21(10): 5402-5408, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785434

RESUMO

The rational improvement of current and developing electrochemical technologies requires atomistic understanding of electrode-electrolyte interfaces. However, examining these interfaces under operando conditions, where performance is typically evaluated and benchmarked, remains challenging, as it necessitates incorporating an operando probe during full electrochemical operation. In this study, we describe a custom electrochemical flow cell that enables near-surface-sensitive operando investigation of planar thin-film catalysts at significant hydrogen evolution reaction (HER) rates (in excess of -100 mA cm-2) using grazing incidence X-ray methods. Grazing-incidence X-ray spectroscopy and diffraction were implemented on the same sample under identical HER conditions, demonstrating how the combined measurements track changing redox chemistry and structure of Cu thin-film catalyst surfaces as a function of electrochemical conditions. The coupling of these methods with improved mass transport and hydrodynamic control establishes a new paradigm for operando measurement design, enabling unique insights into the key fundamental processes occurring at the catalyst-electrolyte interface.

5.
J Am Chem Soc ; 137(3): 1305-13, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562406

RESUMO

Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of the most active currently known OER catalysts in alkaline electrolyte. Operando X-ray absorption spectroscopy (XAS) using high energy resolution fluorescence detection (HERFD) reveals that Fe(3+) in Ni(1-x)Fe(x)OOH occupies octahedral sites with unusually short Fe-O bond distances, induced by edge-sharing with surrounding [NiO6] octahedra. Using computational methods, we establish that this structural motif results in near optimal adsorption energies of OER intermediates and low overpotentials at Fe sites. By contrast, Ni sites in Ni(1-x)Fe(x)OOH are not active sites for the oxidation of water.

6.
ACS Appl Mater Interfaces ; 15(30): 36366-36372, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37481736

RESUMO

Aqueous Na-ion batteries using Prussian blue materials have inherent advantages in safety, material sustainability, and economic cost. However, it is challenging to obtain long-term cycling stability because many redox reactions have poor intrinsic stability in water. Here, we demonstrate reversible Fe2.4+ to Fe3+ redox reaction of Prussian blue electrodes cycled in a 17 m NaClO4 water-in-salt electrolyte. The cubic phase c-Na1.17Fe[Fe(CN)6]·0.35H2O) derived from monoclinic Prussian blue (m-Na1.88Fe[Fe(CN)6]·0.7H2O) through ball milling delivers excellent cycling stability of >18,000 cycles with >90% capacity retention at the 10C rate. The specific capacity is ∼75 and ∼67 mAh/g at 1C and 10C rates, respectively. Systematic characterizations including electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy have verified the phase transition and iron oxidation state evolution, revealing the mechanism that enables the material's high rate and long durability as the battery cathode.

7.
J Phys Chem B ; 127(27): 6091-6101, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37399503

RESUMO

Complementary X-ray absorption fine structure (XAFS) spectroscopy and Raman spectroscopy studies were conducted on several UCl3 concentrations in several chloride salt compositions. The samples were 5% UCl3 in LiCl (S1), 5% UCl3 in KCl (S2), 5% UCl3 in LiCl-KCl eutectic (S3), 5% UCl3 in LiCl-KCl eutectic (S4), 50% UCl3 in KCl (S5), and 20% UCl3 in KCl (S6) molar concentrations. Sample S3 had UCl3 sourced from Idaho National Laboratory (INL), and all other samples were UCl3 sourced from TerraPower. The initial compositions were prepared in an inert and oxygen-free atmosphere. XAFS measurements were performed in the atmosphere at a beamline, and Raman spectroscopy was conducted inside a glovebox. Raman spectra were able to confirm initial UCl3. XAFS and later Raman spectra measured, however, did not correctly match the literature and computational spectra for the prepared UCl3 salt. Rather, the data shows some complex uranium oxychloride phases at room temperature that transition into uranium oxides upon heating. Oxygen pollution due to failure of the sealing mechanism can result in oxidation of the UCl3 salts. The oxychlorides present may be both a function of the unknown O2 exposure concentration, depending on the source of the leak and the salt composition. Evidence of this oxychloride claim and its subsequent decomposition is justified in this work.

8.
Nucl Med Biol ; 110-111: 28-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512517

RESUMO

INTRODUCTION: The in vivo generator 134Ce/134La has the potential to serve as a PET imaging surrogate for both alpha-emitting 225Ac and 227Th radionuclides due to the unique CeIII/CeIV redox couple and the relatively long half-life of 134Ce. The purpose of this study was to demonstrate the compatibility of 134Ce with DOTA-based antibody drug conjugates, which would act as therapeutic agents when incorporating 225Ac. METHODS: The in vivo biodistributions of [134Ce]Ce-DOTA and [134Ce]Ce-citrate were assayed by microPET imaging over 25 h in Swiss Webster mice to determine the in vivo stability of the [134Ce]Ce-DOTA complex. L3-edge X-ray absorption spectroscopy measurements were used to confirm the Ce oxidation state and the formation of a fully coordinated Ce-DOTA complex. The in vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab was assayed over 147 h by microPET imaging in SK-OV-3 tumor-bearing NOD SCID mice to evaluate tumor uptake and in vivo stability. Mice were euthanized at 214 h after administration of the radiolabeled antibody conjugate, and imaged 1 h later. An ex vivo biodistribution experiment was then performed in order to corroborate the PET images. RESULTS: [134Ce]Ce-DOTA displayed rapid renal elimination and high in vivo stability over 25 h, with negligible bone and liver uptake, in comparison to [134Ce]Ce-citrate. L3-edge X-ray absorption spectroscopy experiments confirmed the 3+ oxidation state within the stable Ce-DOTA complex. MicroPET images of [134Ce]Ce-DOTA-Trastuzumab displayed elevated tumor uptake over 214 h, with minimal bone and liver uptake analogous to previously reported [225Ac]Ac-DOTA-Trastuzumab biodistribution results, and the ex vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab corroborated the final PET images. CONCLUSION: These results demonstrate that 134Ce allows for long-term tumor targeting with DOTA-based antibody drug conjugates and may therefore be used to trace antibody drug conjugates incorporating 225Ac.


Assuntos
Imunoconjugados , Animais , Linhagem Celular Tumoral , Citratos , Camundongos , Camundongos SCID , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA