RESUMO
BACKGROUND: To date, the usage of Galaxy, an open-source bioinformatics platform, has been reported primarily in research. We report 5 years' experience (2015 to 2020) with Galaxy in our hospital, as part of the "Assistance Publique-Hôpitaux de Paris" (AP-HP), to demonstrate its suitability for high-throughput sequencing (HTS) data analysis in a clinical laboratory setting. METHODS: Our Galaxy instance has been running since July 2015 and is used daily to study inherited diseases, cancer, and microbiology. For the molecular diagnosis of hereditary diseases, 6970 patients were analyzed with Galaxy (corresponding to a total of 7029 analyses). RESULTS: Using Galaxy, the time to process a batch of 23 samples-equivalent to a targeted DNA sequencing MiSeq run-from raw data to an annotated variant call file was generally less than 2 h for panels between 1 and 500 kb. Over 5 years, we only restarted the server twice for hardware maintenance and did not experience any significant troubles, demonstrating the robustness of our Galaxy installation in conjunction with HTCondor as a job scheduler and a PostgreSQL database. The quality of our targeted exome sequencing method was externally evaluated annually by the European Molecular Genetics Quality Network (EMQN). Sensitivity was mean (SD)% 99 (2)% for single nucleotide variants and 93 (9)% for small insertion-deletions. CONCLUSION: Our experience with Galaxy demonstrates it to be a suitable platform for HTS data analysis with vast potential to benefit patient care in a clinical laboratory setting.
Assuntos
Biologia Computacional , Laboratórios Clínicos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA , SoftwareRESUMO
BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.Y354X, p.R415X, p.R470X, p.R1057X, p.R1090X, and p.E1302X) identified in patients with PFIC2. APPROACH AND RESULTS: The ability of G418, gentamicin, and PTC124 to induce readthrough was studied using a dual gene reporter system in NIH3T3 cells. The ability of gentamicin to induce readthrough and to lead to the expression of a full-length protein was studied in human embryonic kidney 293 (HEK293), HepG2, and Can 10 cells using immunodetection assays. The function of the gentamicin-induced full-length protein was studied by measuring the [3 H]-taurocholate transcellular transport in stable Madin-Darby canine kidney clones co-expressing Na+-taurocholate co-transporting polypeptide (Ntcp). Combinations of gentamicin and chaperone drugs (ursodeoxycholic acid, 4-phenylbutyrate [4-PB]) were investigated. In NIH3T3, aminoglycosides significantly increased the readthrough level of all mutations studied, while PTC124 only slightly increased the readthrough of p.E1302X. Gentamicin induced a readthrough of p.R415X, p.R470X, p.R1057X, and p.R1090X in HEK293 cells. The resulting full-length proteins localized within the cytoplasm, except for BsepR1090X , which was also detected at the plasma membrane of human embryonic kidney HEK293 and at the canalicular membrane of Can 10 and HepG2 cells. Additional treatment with 4-PB and ursodeoxycholic acid significantly increased the canalicular proportion of full-length BsepR1090X protein in Can 10 cells. In Madin-Darby canine kidney clones, gentamicin induced a 40% increase of the BsepR1090X [3 H]-taurocholate transport, which was further increased with additional 4-PB treatment. CONCLUSION: This study constitutes a proof of concept for readthrough therapy in selected patients with PFIC2 with nonsense mutations.
Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Códon sem Sentido/efeitos dos fármacos , Animais , Estudos de Coortes , Cães , Gentamicinas/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Oxidiazóis/farmacologia , Fenilbutiratos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ácido Ursodesoxicólico/farmacologiaRESUMO
Adenosine kinase (ADK) deficiency is characterized by liver disease, dysmorphic features, epilepsy and developmental delay. This defect disrupts the adenosine/AMP futile cycle and interferes with the upstream methionine cycle. We report the clinical, histological and biochemical courses of three ADK children carrying two new mutations and presenting with neonatal cholestasis and neurological disorders. One of them died of liver failure whereas the other two recovered from their liver damage. As the phenotype was consistent with a mitochondrial disorder, we studied liver mitochondrial respiratory chain activities in two patients and revealed a combined defect of several complexes. In addition, we retrospectively analyzed methionine plasma concentration, a hallmark of ADK deficiency, in a cohort of children and showed that methionine level in patients with ADK deficiency was strongly increased compared with patients with other liver diseases. ADK deficiency is a cause of neonatal or early infantile liver disease that may mimic primary mitochondrial disorders. In this context, an elevation of methionine plasma levels over twice the upper limit should not be considered as a nonspecific finding. ADK deficiency induced-liver dysfunction is most often transient, but could be life-threatening.
Assuntos
Adenosina Quinase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicina N-Metiltransferase/deficiência , Adenosina/genética , Adenosina/metabolismo , Adenosina Quinase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Predisposição Genética para Doença , Glicina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Hepatopatias/complicações , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Estudos RetrospectivosRESUMO
OBJECTIVE: We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN: Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS: In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION: The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Assuntos
Sistema Biliar/fisiopatologia , Colestase Intra-Hepática/prevenção & controle , Receptores Acoplados a Proteínas G/fisiologia , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Colestase Intra-Hepática/metabolismo , Impedância Elétrica , Epitélio/fisiopatologia , Ácidos Isonipecóticos/farmacologia , Ácidos Isonipecóticos/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximas/farmacologia , Oximas/uso terapêutico , Permeabilidade , Fosforilação/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas/metabolismoRESUMO
BACKGROUND & AIM: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.
Assuntos
Colestase Intra-Hepática , Quinolonas , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Aminofenóis , Animais , Ácidos e Sais Biliares , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Cães , Humanos , RatosRESUMO
Some patients with microvillus inclusion disease due to myosin 5B (MYO5B) mutations may develop cholestasis characterized by a progressive familial intrahepatic cholestasis-like phenotype with normal serum gamma-glutamyl transferase activity. So far MYO5B deficiency has not been reported in patients with such a cholestasis phenotype in the absence of intestinal disease. Using a new-generation sequencing approach, we identified MYO5B mutations in five patients with progressive familial intrahepatic cholestasis-like phenotype with normal serum gamma-glutamyl transferase activity without intestinal disease. CONCLUSION: These data show that MYO5B deficiency may lead to isolated cholestasis and that MYO5B should be considered as an additional progressive familial intrahepatic cholestasis gene. (Hepatology 2017;65:164-173).
Assuntos
Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , gama-Glutamiltransferase/sangue , Colestase Intra-Hepática/enzimologia , Feminino , Humanos , Lactente , Síndromes de Malabsorção , Masculino , Microvilosidades/patologia , MucolipidosesRESUMO
UNLABELLED: Progressive familial intrahepatic cholestasis type 3 is caused by biallelic variations of ABCB4, most often (≥70%) missense. In this study, we examined the effects of 12 missense variations identified in progressive familial intrahepatic cholestasis type 3 patients. We classified these variations on the basis of the defects thus identified and explored potential rescue of trafficking-defective mutants by pharmacological means. Variations were reproduced in the ABCB4 complementary DNA and the mutants, thus obtained, expressed in HepG2 and HEK293 cells. Three mutants were either fully (I541F and L556R) or largely (Q855L) retained in the endoplasmic reticulum, in an immature form. Rescue of the defect, i.e., increase in the mature form at the bile canaliculi, was obtained by cell treatments with cyclosporin A or C and, to a lesser extent, B, D, or H. Five mutations with little or no effect on ABCB4 expression at the bile canaliculi caused a decrease (F357L, T775M, and G954S) or almost absence (S346I and P726L) of phosphatidylcholine secretion. Two mutants (T424A and N510S) were normally processed and expressed at the bile canaliculi, but their stability was reduced. We found no defect of the T175A mutant or of R652G, previously described as a polymorphism. In patients, the most severe phenotypes appreciated by the duration of transplant-free survival were caused by ABCB4 variants that were markedly retained in the endoplasmic reticulum and expressed in a homozygous status. CONCLUSION: ABCB4 variations can be classified as follows: nonsense variations (I) and, on the basis of current findings, missense variations that primarily affect the maturation (II), activity (III), or stability (IV) of the protein or have no detectable effect (V); this classification provides a strong basis for the development of genotype-based therapies.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Colestase Intra-Hepática/genética , Mutação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Ciclosporina/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Fosfatidilcolinas/metabolismoRESUMO
OBJECTIVES: Early diagnosis of bile acid synthesis disorders (BASDs) is important because, untreated, these conditions can be fatal. Our objectives were to screen children with cholestasis or unexplained liver disease for BASD and in those with confirmed BASD to evaluate the effectiveness of cholic acid therapy. METHODS: A routine serum total bile acid measurement was performed on children with cholestasis, liver cirrhosis, and liver failure. Patients were screened for BASD by fast atom bombardment ionization-mass spectrometry (FAB-MS) analysis of urine, and molecular analysis confirmed diagnosis. Treatment response to oral cholic acid (10-15 mg/kg bw/day) was assessed from liver function tests and fat-soluble vitamin levels. FAB-MS analysis of urine was used to monitor compliance and biochemical response. RESULTS: Between 2007 and 2016, 626 patients were evaluated; 450 with infantile cholestasis. Fifteen cases of BASD were diagnosed: 12 presented with infantile cholestasis (2.7%, 7 boys), an 8-year-old boy presented with cirrhosis, and two 18-month-old boys presented with hepatomegaly and rickets. Eleven were caused by 3ß-hydroxy-Δ-C27-steroid oxidoreductase dehydrogenase deficiency, 3 from Δ-3-oxosteroid 5ß-reductase deficiency, and 1 had Zellweger spectrum disorder. In all but 1, serum total bile acids were normal or low. With cholic acid therapy, 10 are alive and healthy with their native liver. Liver failure developed in 3 infants despite therapy; 2 died and 1 underwent liver transplantation. CONCLUSIONS: BASDs are rare but treatable causes of metabolic liver disease in Saudi Arabia. BASD should be considered in infants with cholestasis and low or normal serum total bile acid concentrations.
Assuntos
Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Árabes , Ácidos e Sais Biliares/sangue , Ácidos Cólicos/administração & dosagem , Fármacos Gastrointestinais/administração & dosagem , Hepatopatias/diagnóstico , Administração Oral , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/urina , Ácidos e Sais Biliares/urina , Criança , Pré-Escolar , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Fígado/fisiopatologia , Hepatopatias/tratamento farmacológico , Testes de Função Hepática , Estudos Longitudinais , Arábia Saudita , Espectrometria de Massa de Íon SecundárioRESUMO
UNLABELLED: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a result of mutations in ABCB11 encoding bile salt export pump (BSEP), the canalicular bile salt export pump of hepatocyte. In some PFIC2 patients with missense mutations, BSEP is not detected at the canaliculus owing to mistrafficking of BSEP mutants. In vitro, chaperone drugs, such as 4-phenylbutyrate (4-PB), have been shown to partially correct mistrafficking. Four PFIC2 patients harboring at least one missense mutation (p.G982R, p.R1128C, and p.T1210P) were treated orally with 4-PB and followed prospectively. Patient mutations were reproduced in a Bsep/green fluorescent protein plasmid. Cellular localization of the resulting Bsep mutants was studied in a hepatocellular line (Can 10), and effects of treatment with 4-PB and/or ursodeoxycholic acid (UDCA) were assessed. In Can 10 cells, Bsep mutants were detected in the endoplasmic reticulum instead of at the canalicular membrane. Treatment with 4-PB and UDCA partially corrected Bsep mutant targeting. With 4-PB, we observed, in all patients, a decrease of pruritus and serum bile acid concentration (BAC) as well as an improvement of serum liver tests. Pathological liver injuries improved, and BSEP, which was not detected at the canalicular membrane before treatment, appeared at the canalicular membrane. Bile analyses showed an increase in BAC with 4-PB. Patient conditions remained stable with a median follow-up of 40 months (range, 3-53), and treatment tolerance was good. CONCLUSION: 4-PB therapy may be efficient in selected patients with PFIC2 owing to ABCB11 missense mutations affecting BSEP canalicular targeting. Bile secretion improvement may be a result of the ability of 4-PB to retarget mutated BSEP.
Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Colestase Intra-Hepática/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Fenilbutiratos/uso terapêutico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Colestase Intra-Hepática/patologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Seguimentos , Humanos , Masculino , Mutação de Sentido Incorreto , Ratos , Estudos de Amostragem , Fatores de Tempo , Transfecção , Resultado do TratamentoRESUMO
UNLABELLED: Microvillous inclusion disease (MVID) is a congenital disorder of the enterocyte related to mutations in the MYO5B gene, leading to intractable diarrhea often necessitating intestinal transplantation (ITx). Among our cohort of 28 MVID patients, 8 developed a cholestatic liver disease akin to progressive familial intrahepatic cholestasis (PFIC). Our aim was to investigate the mechanisms by which MYO5B mutations affect hepatic biliary function and lead to cholestasis in MVID patients. Clinical and biological features and outcome were reviewed. Pretransplant liver biopsies were analyzed by immunostaining and electron microscopy. Cholestasis occurred before (n = 5) or after (n = 3) ITx and was characterized by intermittent jaundice, intractable pruritus, increased serum bile acid (BA) levels, and normal gamma-glutamyl transpeptidase activity. Liver histology showed canalicular cholestasis, mild-to-moderate fibrosis, and ultrastructural abnormalities of bile canaliculi. Portal fibrosis progressed in 5 patients. No mutation in ABCB11/BSEP or ATP8B1/FIC1 genes were identified. Immunohistochemical studies demonstrated abnormal cytoplasmic distribution of MYO5B, RAB11A, and BSEP in hepatocytes. Interruption of enterohepatic BA cycling after partial external biliary diversion or graft removal proved the most effective to ensure long-term remission. CONCLUSION: MVID patients are at risk of developing a PFIC-like liver disease that may hamper outcome after ITx. Our results suggest that cholestasis in MVID patients results from (1) impairment of the MYO5B/RAB11A apical recycling endosome pathway in hepatocytes, (2) altered targeting of BSEP to the canalicular membrane, and (3) increased ileal BA absorption. Because cholestasis worsens after ITx, indication of a combined liver ITx should be discussed in MVID patients with severe cholestasis. Future studies will need to address more specifically the effect of MYO5B dysfunction in BA homeostasis.
Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase , Síndromes de Malabsorção , Microvilosidades/patologia , Mucolipidoses , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Biópsia , Pré-Escolar , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Diarreia Infantil/genética , Diarreia Infantil/metabolismo , Diarreia Infantil/patologia , Endossomos/metabolismo , Endossomos/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Heterozigoto , Homozigoto , Humanos , Lactente , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/genética , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an autosomal recessive disease due to mutations in ABCB11. ABCB11 encodes the bile salt export pump (BSEP), the major transporter responsible for biliary bile acid secretion, which expression is restricted to hepatocytes. In some patients, molecular analysis of ABCB11 revealed either exonic or intronic variations - including common polymorphisms - predicted to affect splicing according to in silico analysis or in vitro minigene studies. Transcript analysis in liver tissue is the best way to determine whether the variations predicted to affect splicing are deleterious or not. METHODS AND RESULTS: We performed ABCB11 transcript analysis in liver tissue from five PFIC2 patients who had variations which were predicted to either affect splicing or not. Among eleven variants tested, only the silent c.3003A>G variant and the intronic c.3213+4A>G variant led to abnormal splicing as suggested by in silico analysis. CONCLUSION: ABCB11 liver transcript analysis is a useful tool to confirm or invalidate the predicted splicing effect of a silent or intronic ABCB11 variation.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/metabolismo , Fígado/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Íntrons , Mutação de Sentido Incorreto , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Background & Aims: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods: We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results: Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions: Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications: In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.
RESUMO
BACKGROUND: Oral cholic acid therapy is an effective therapy in children with primary bile acid synthesis deficiencies. Most reported patients with this treatment have 3ß-hydroxy-Δ5-C27-steroid oxidoreductase deficiency. The aim of the study was the evaluation of cholic acid therapy in a cohort of patients with the rarer Δ4-3-oxosteroid 5ß-reductase (Δ4-3-oxo-R) deficiency. METHODS: Sixteen patients with Δ4-3-oxo-R deficiency confirmed by AKR1D1 gene sequencing who received oral cholic acid were retrospectively analyzed. RESULTS: First symptoms were reported early in life (median 2 months of age), with 14 and 3 patients having cholestatic jaundice and severe bleeding respectively. Fifteen patients received ursodeoxycholic acid before diagnosis, with partial improvement in 8 patients. Four patients had liver failure at the time of cholic acid initiation. All 16 patients received cholic acid from a median age of 8.1 months (range 3.1-159) and serum liver tests normalized in all within 6-12 months of treatment. After a median cholic acid therapy of 4.5 years (range 1.1-24), all patients were alive with their native liver. Median daily cholic acid dose at last follow-up was 8.3 mg/kg of body weight. All patients, but one, had normal physical examination and all had normal serum liver tests. Fibrosis, evaluated using liver biopsy (n = 4) or liver elastography (n = 9), had stabilized or improved. Cholic acid therapy enabled a 12-fold decrease of 3-oxo-∆4 derivatives in urine. Patients had normal growth and quality of life. The treatment was well tolerated without serious adverse events and signs of hepatotoxicity. CONCLUSIONS: Oral cholic acid therapy is a safe and effective treatment for patients with Δ4-3-oxo-R deficiency.
Assuntos
Ácidos e Sais Biliares , Doenças Metabólicas , Criança , Humanos , Ácido Cólico/uso terapêutico , Estudos Retrospectivos , Qualidade de Vida , Doenças Metabólicas/tratamento farmacológico , Oxirredutases/genéticaRESUMO
BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is due to mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP) of hepatocyte. Liver transplantation is usually required. 4-phenylbutyrate (4-PB) has been shown in vitro to retarget some selected mutated apical transporters. After an in vitro study in a hepatocellular polarized line, we tested 4-PB treatment in a child with a homozygous p.T1210P BSEP mutation. METHODS: Can 10 cells were transfected with plasmids encoding wild type Bsep (Bsep(wt)) and mutated p.T1210P Bsep (Bsep(T1210P)), both tagged with GFP. Then, cells were treated with 4-PB at 37 or 27°C, immunostained and analyzed using confocal microscopy. The child received 4-PB orally in two divided doses and BSEP liver immunostaining was performed before and after 4-PB as well as bile analysis. RESULTS: In Can 10 cells, in contrast to Bsep(wt)-GFP, Bsep(T1210P)-GFP was not detected at the canalicular membrane but in the endoplasmic reticulum. 4-PB as well as incubation at 27°C partially corrected Bsep(T1210P)-GFP targeting to the canalicular membrane, while combined treatments resulted in normal canalicular localization. In the child, we showed that 4-PB improved clinical and biological parameters of cholestasis and liver function. Also, canalicular expression of p.T1210P BSEP mutant was partially corrected as was biliary bile acid excretion. CONCLUSIONS: The results illustrate for the first time the therapeutic potential of a clinically approved chaperone drug in a selected patient with PFIC2 and support that bile secretion improvement might be due to the ability of 4-PB to retarget mutated BSEP.
Assuntos
Antineoplásicos/uso terapêutico , Colestase Intra-Hepática/tratamento farmacológico , Fenilbutiratos/uso terapêutico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Ácidos e Sais Biliares/sangue , Linhagem Celular , Membrana Celular/metabolismo , Criança , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Feminino , Humanos , Mutação de Sentido Incorreto , Fenilbutiratos/farmacologia , Prurido/etiologiaRESUMO
Glycogen storage disease (GSD) due to a deficient hepatic phosphorylase system defines a genetically heterogeneous group of disorders that mainly manifests in children. We investigated 45 unrelated children in whom a liver GSD VI or IX was suspected on the basis of clinical symptoms including hepatomegaly, increased serum transaminases, postprandial lactatemia and/or mild fasting hypoglycemia. Liver phosphorylase and phosphorylase b kinase activities studied in peripheral blood cells allowed to suspect diagnosis in 37 cases but was uninformative in 5. Sequencing of liver phosphorylase genes was useful to establish an accurate diagnosis. Causative mutations were found either in the PYGL (11 patients), PHKA2 (26 patients), PHKG2 (three patients) or in the PHKB (three patients) genes. Eleven novel disease causative mutations, five missense (p.N188K, p.D228Y, p.P382L, p.R491H, p.L500R) and six truncating mutations (c.501_502ins361pb, c.528+2T>C, c.856-29_c.1518+614del, c.1620+1G>C, p.E703del and c.2313-1G>T) were identified in the PYGL gene. Seventeen novel disease causative mutations, ten missense (p.A42P, p.Q95R, p.G131D, p.G131V, p.Q134R, p.G187R, p.G300V, p.G300A, p.C326Y, p.W820G) and seven truncating (c.537+5G>A, p.G396DfsX28, p.Q404X, p.N653X, p.L855PfsX87, and two large deletions) were identified in the PHKA2 gene. Four novel truncating mutations (p.R168X, p.Q287X, p.I268PfsX12 and c.272-1G>C) were identified in the PHKG2 gene and three (c.573_577del, p.R364X, c.2427+3A>G) in the PHKB gene. Patients with PHKG2 mutations evolved towards cirrhosis. Molecular analysis of GSD VI or IX genes allows to confirm diagnosis suspected on the basis of enzymatic analysis and to establish diagnosis and avoid liver biopsy when enzymatic studies are not informative in blood cells.
Assuntos
Doença de Depósito de Glicogênio/sangue , Doença de Depósito de Glicogênio/diagnóstico , Fígado/enzimologia , Fígado/patologia , Fosforilase Quinase/deficiência , Fosforilases/deficiência , Pré-Escolar , Feminino , Estudos de Associação Genética , Doença de Depósito de Glicogênio/enzimologia , Doença de Depósito de Glicogênio/genética , Humanos , Lactente , Masculino , Mutação/genética , Fosforilase Quinase/genética , Fosforilases/genéticaRESUMO
UNLABELLED: Progressive familial intrahepatic cholestasis (PFIC) types 1 and 2 are characterized by normal serum gamma-glutamyl transferase (GGT) activity and are due to mutations in ATP8B1 (encoding FIC1) and ABCB11 (encoding bile salt export pump [BSEP]), respectively. Our goal was to evaluate the features that may distinguish PFIC1 from PFIC2 and ease their diagnosis. We retrospectively reviewed charts of 62 children with normal-GGT PFIC in whom a search for ATP8B1 and/or ABCB11 mutation, liver BSEP immunostaining, and/or bile analysis were performed. Based on genetic testing, 13 patients were PFIC1 and 39 PFIC2. The PFIC origin remained unknown in 10 cases. PFIC2 patients had a higher tendency to develop neonatal cholestasis. High serum alanine aminotransferase and alphafetoprotein levels, severe lobular lesions with giant hepatocytes, early liver failure, cholelithiasis, hepatocellular carcinoma, very low biliary bile acid concentration, and negative BSEP canalicular staining suggest PFIC2, whereas an absence of these signs and/or presence of extrahepatic manifestations suggest PFIC1. The PFIC1 and PFIC2 phenotypes were not clearly correlated with mutation types, but we found tendencies for a better prognosis and response to ursodeoxycholic acid (UDCA) or biliary diversion (BD) in a few children with missense mutations. Combination of UDCA, BD, and liver transplantation allowed 87% of normal-GGT PFIC patients to be alive at a median age of 10.5 years (1-36), half of them without liver transplantation. CONCLUSION: PFIC1 and PFIC2 differ clinically, biochemically, and histologically at presentation and/or during the disease course. A small proportion of normal-GGT PFIC is likely not due to ATP8B1 or ABCB11 mutations.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Colestase Intra-Hepática/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Alanina Transaminase/sangue , Criança , Pré-Escolar , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/patologia , Colestase Intra-Hepática/terapia , Humanos , Lactente , Fígado/patologia , Cirrose Hepática/patologia , Fenótipo , Estudos Retrospectivos , Ácido Ursodesoxicólico/uso terapêutico , alfa-Fetoproteínas/metabolismo , gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/genéticaRESUMO
Class III multidrug resistance P-glycoproteins, Mdr2 in mice and MDR3 in human, are canalicular phospholipid translocators involved in biliary phospholipid (phosphatidylcholine) excretion. The role of an ABCB4 gene defect in liver disease has been initially proven in a subtype of progressive familial intrahepatic cholestasis called PFIC3, a severe pediatric liver disease that may require liver transplantation. Several ABCB4 mutations have been identified in children with PFIC3 and are associated with low level of phospholipids in bile leading to a high biliary cholesterol saturation index. ABCB4 mutations are associated with loss of canalicular MDR3 protein and /or loss of protein function. There is evidence that a biallelic or monoallelic ABCB4 defect causes or predisposes to several human liver diseases (PFIC3, low phospholipid associated cholelithiasis syndrome, intrahepatic cholestasis of pregnancy, drug-induced liver injury, transient neonatal cholestasis, adult biliary fibrosis, or cirrhosis). Most patients with MDR3 deficiency have a favorable outcome with ursodeoxycholic acid (UDCA) therapy, but some PFIC3 patients who do not respond to UDCA treatment still require liver transplantation. The latter should be good candidates for a targeted pharmacologic approach and/or to cell therapy in the future.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/genética , Hepatopatias/fisiopatologia , Mutação , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Animais , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/fisiopatologia , Feminino , Genes MDR/fisiologia , Predisposição Genética para Doença , Humanos , Recém-Nascido , Icterícia Neonatal/fisiopatologia , Transplante de Fígado , Mutação/genética , Mutação de Sentido Incorreto , Fenótipo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Ácido Ursodesoxicólico/uso terapêutico , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
BACKGROUND & AIMS: PFIC2 is caused by mutations in ABCB11 encoding BSEP. In most cases affected children need liver transplantation that is thought to be curative. We report on two patients who developed recurrent normal GGT cholestasis mimicking primary BSEP disease, after liver transplantation. METHODS: PFIC2 diagnosis was made in infancy in both patients on absence of canalicular BSEP immunodetection and on ABCB11 mutation identification. Liver transplantation was performed at age 9 (patient 1) and 2.8 (patient 2) years without major complications. Cholestasis with normal GGT developed 17 and 4.8years after liver transplantation, in patient 1 and patient 2, respectively, during an immunosuppression reduction period. RESULTS: Liver biopsies showed canalicular cholestasis, giant hepatocytes, and slight lobular fibrosis, without evidence of rejection or biliary complications. An increase in immunosuppression resulted in cholestasis resolution in only one patient. Both patients developed atrial fibrillation, and one melanonychia. The newborn of patient 1 developed transient neonatal normal GGT cholestasis. Immunofluorescence staining of normal human liver sections with patient's sera, collected at the time of cholestasis, and using an anti-human IgG antibody to detect serum antibodies, showed reactivity to a canalicular epitope, likely to be BSEP. Indeed, Western blot analysis showed that patient 2 serum recognized rat Bsep. CONCLUSIONS: Allo-immune mediated BSEP dysfunction may occur after liver transplantation in PFIC2 patients leading to a PFIC2 like phenotype. Extrahepatic features and/or offspring transient neonatal cholestasis of possible immune mediated mechanisms, may be associated. Increasing the immunosuppressive regimen might be an effective therapy.