Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32631945

RESUMO

Clostridioides difficile is an etiological agent for antibiotic-associated diarrheal disease. C. difficile produces a phenolic compound, para-cresol, which selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. C. difficile decarboxylates para-hydroxyphenylacetate (p-HPA) to produce p-cresol by the action of the HpdBCA decarboxylase encoded by the hpdBCA operon. Here, we investigate regulation of the hpdBCA operon and directly compare three independent reporter systems; SNAP-tag, glucuronidase gusA, and alkaline phosphatase phoZ reporters to detect basal and inducible expression. We show that expression of hpdBCA is upregulated in response to elevated p-HPA. In silico analysis identified three putative promoters upstream of hpdBCA operon-P1, P2, and Pσ54; only the P1 promoter was responsible for both basal and p-HPA-inducible expression of hpdBCA We demonstrated that turnover of tyrosine, a precursor for p-HPA, is insufficient to induce expression of the hpdBCA operon above basal levels because it is inefficiently converted to p-HPA in minimal media. We show that induction of the hpdBCA operon in response to p-HPA occurs in a dose-dependent manner. We also identified an inverted palindromic repeat (AAAAAG-N13-CTTTTT) upstream of the hpdBCA start codon (ATG) that is essential for inducing transcription of the hpdBCA operon in response to p-HPA, which drives the production of p-cresol. This provides insights into the regulatory control of p-cresol production, which affords a competitive advantage for C. difficile over other intestinal bacteria, promoting dysbiosis.IMPORTANCEClostridioides difficile infection results from antibiotic-associated dysbiosis. para-Cresol, a phenolic compound produced by C. difficile, selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. Here, we demonstrate that expression of the hpdBCA operon, encoding the HpdBCA decarboxylase which converts p-HPA to p-cresol, is upregulated in response to elevated exogenous p-HPA, with induction occurring between >0.1 and ≤0.25 mg/ml. We determined a single promoter and an inverted palindromic repeat responsible for basal and p-HPA-inducible hpdBCA expression. We identified turnover of tyrosine, a p-HPA precursor, does not induce hpdBCA expression above basal level, indicating that exogenous p-HPA was required for p-cresol production. Identifying regulatory controls of p-cresol production will provide novel therapeutic targets to prevent p-cresol production, reducing C. difficile's competitive advantage.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Clostridioides difficile/metabolismo , Cresóis/metabolismo , Fenilacetatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas
2.
PLoS Pathog ; 14(9): e1007191, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208103

RESUMO

Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.


Assuntos
Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Cresóis/metabolismo , Microbioma Gastrointestinal/fisiologia , Bactérias Gram-Negativas/fisiologia , Animais , Antibacterianos/efeitos adversos , Biodiversidade , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Cresóis/farmacologia , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mutação
3.
J Biol Chem ; 291(49): 25450-25461, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27703012

RESUMO

Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439-25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/fisiologia , Flagelina/metabolismo , Glicosiltransferases/metabolismo , Células CACO-2 , Clostridioides difficile/patogenicidade , Flagelina/genética , Glicosilação , Humanos , Receptor 5 Toll-Like/metabolismo
4.
J Biol Chem ; 290(40): 24453-69, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26283789

RESUMO

In Gram-positive pathogens, surface proteins may be covalently anchored to the bacterial peptidoglycan by sortase, a cysteine transpeptidase enzyme. In contrast to other Gram-positive bacteria, only one single sortase enzyme, SrtB, is conserved between strains of Clostridium difficile. Sortase-mediated peptidase activity has been reported in vitro, and seven potential substrates have been identified. Here, we demonstrate the functionality of sortase in C. difficile. We identify two sortase-anchored proteins, the putative adhesins CD2831 and CD3246, and determine the cell wall anchor structure of CD2831. The C-terminal PPKTG sorting motif of CD2831 is cleaved between the threonine and glycine residues, and the carboxyl group of threonine is amide-linked to the side chain amino group of diaminopimelic acid within the peptidoglycan peptide stem. We show that CD2831 protein levels are elevated in the presence of high intracellular cyclic diGMP (c-diGMP) concentrations, in agreement with the control of CD2831 expression by a c-diGMP-dependent type II riboswitch. Low c-diGMP levels induce the release of CD2831 and presumably CD3246 from the surface of cells. This regulation is mediated by proteolytic cleavage of CD2831 and CD3246 by the zinc metalloprotease ZmpI, whose expression is controlled by a type I c-diGMP riboswitch. These data reveal a novel regulatory mechanism for expression of two sortase substrates by the secondary messenger c-diGMP, on which surface anchoring is dependent.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Clostridioides difficile/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Adesinas Bacterianas/metabolismo , Motivos de Aminoácidos , Aminoaciltransferases/metabolismo , Membrana Celular/metabolismo , GMP Cíclico/química , Cisteína Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Mutação , Oligonucleotídeos/metabolismo , Peptidoglicano/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo
5.
BMC Microbiol ; 14: 219, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-25183427

RESUMO

BACKGROUND: Bacterial sortases are transpeptidases that covalently anchor surface proteins to the peptidoglycan of the Gram-positive cell wall. Sortase protein anchoring is mediated by a conserved cell wall sorting signal on the anchored protein, comprising of a C-terminal recognition sequence containing an "LPXTG-like" motif, followed by a hydrophobic domain and a positively charged tail. RESULTS: We report that Clostridium difficile strain 630 encodes a single sortase (SrtB). A FRET-based assay was used to confirm that recombinant SrtB catalyzes the cleavage of fluorescently labelled peptides containing (S/P)PXTG motifs. Strain 630 encodes seven predicted cell wall proteins with the (S/P)PXTG sorting motif, four of which are conserved across all five C. difficile lineages and include potential adhesins and cell wall hydrolases. Replacement of the predicted catalytic cysteine residue at position 209 with alanine abolishes SrtB activity, as does addition of the cysteine protease inhibitor MTSET to the reaction. Mass spectrometry reveals the cleavage site to be between the threonine and glycine residues of the (S/P)PXTG peptide. Small-molecule inhibitors identified through an in silico screen inhibit SrtB enzymatic activity to a greater degree than MTSET. CONCLUSIONS: These results demonstrate for the first time that C. difficile encodes a single sortase enzyme, which cleaves motifs containing (S/P)PXTG in-vitro. The activity of the sortase can be inhibited by mutation of a cysteine residue in the predicted active site and by small-molecule inhibitors.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/enzimologia , Inibidores Enzimáticos/metabolismo , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Cisteína/genética , Cisteína/metabolismo , Hidrólise , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Peptidoglicano/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(16): 7527-32, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368420

RESUMO

Clostridium difficile has rapidly emerged as the leading cause of antibiotic-associated diarrheal disease, with the transcontinental spread of various PCR ribotypes, including 001, 017, 027 and 078. However, the genetic basis for the emergence of C. difficile as a human pathogen is unclear. Whole genome sequencing was used to analyze genetic variation and virulence of a diverse collection of thirty C. difficile isolates, to determine both macro and microevolution of the species. Horizontal gene transfer and large-scale recombination of core genes has shaped the C. difficile genome over both short and long time scales. Phylogenetic analysis demonstrates C. difficile is a genetically diverse species, which has evolved within the last 1.1-85 million years. By contrast, the disease-causing isolates have arisen from multiple lineages, suggesting that virulence evolved independently in the highly epidemic lineages.


Assuntos
Clostridioides difficile/genética , Evolução Molecular , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo , Virulência
7.
Sci Rep ; 13(1): 9492, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303029

RESUMO

Treatment of Clostridioides difficile infection (CDI) is expensive and complex, with a high proportion of patients suffering infection relapse (20-35%), and some having multiple relapses. A healthy, unperturbed gut microbiome provides colonisation resistance against CDI through competition for nutrients and space. However, antibiotic consumption can disturb the gut microbiota (dysbiosis) resulting in the loss of colonisation resistance allowing C. difficile to colonise and establish infection. A unique feature of C. difficile is the production of high concentrations of the antimicrobial compound para-cresol, which provides the bacterium with a competitive advantage over other bacteria found in the gut. p-cresol is produced by the conversion of para-Hydroxyphenylacetic acid (p-HPA) by the HpdBCA enzyme complex. In this study, we have identified several promising inhibitors of HpdBCA decarboxylase, which reduce p-cresol production and render C. difficile less able to compete with a gut dwelling Escherichia coli strain. We demonstrate that the lead compound, 4-Hydroxyphenylacetonitrile, reduced p-cresol production by 99.0 ± 0.4%, whereas 4-Hydroxyphenylacetamide, a previously identified inhibitor of HpdBCA decarboxylase, only reduced p-cresol production by 54.9 ± 13.5%. To interpret efficacy of these first-generation inhibitors, we undertook molecular docking studies that predict the binding mode for these compounds. Notably, the predicted binding energy correlated well with the experimentally determined level of inhibition, providing a molecular basis for the differences in efficacy between the compounds. This study has identified promising p-cresol production inhibitors whose development could lead to beneficial therapeutics that help to restore colonisation resistance and therefore reduce the likelihood of CDI relapse.


Assuntos
Carboxiliases , Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Simulação de Acoplamento Molecular , Clostridioides , Escherichia coli
8.
ACS Infect Dis ; 9(12): 2665-2674, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37965964

RESUMO

The bacterial flagellum is involved in a variety of processes including motility, adherence, and immunomodulation. In the Clostridioides difficile strain 630Δerm, the main filamentous component, FliC, is post-translationally modified with an O-linked Type A glycan structure. This modification is essential for flagellar function, since motility is seriously impaired in gene mutants with improper biosynthesis of the Type A glycan. The cd0240-cd0244 gene cluster encodes the Type A biosynthetic proteins, but the role of each gene, and the corresponding enzymatic activity, have not been fully elucidated. Using quantitative mass spectrometry-based proteomics analyses, we determined the relative abundance of the observed glycan variations of the Type A structure in cd0241, cd0242, cd0243, and cd0244 mutant strains. Our data not only confirm the importance of CD0241, CD0242, and CD0243 but, in contrast to previous data, also show that CD0244 is essential for the biosynthesis of the Type A modification. Combined with additional bioinformatic analyses, we propose a revised model for Type A glycan biosynthesis.


Assuntos
Clostridioides difficile , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Vias Biossintéticas , Proteômica , Espectrometria de Massas , Polissacarídeos
9.
Infect Immun ; 80(8): 2704-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615253

RESUMO

Clostridium difficile is a major cause of chronic antibiotic-associated diarrhea and a significant health care-associated pathogen that forms highly resistant and infectious spores. Spo0A is a highly conserved transcriptional regulator that plays a key role in initiating sporulation in Bacillus and Clostridium species. Here, we use a murine model to study the role of the C. difficile spo0A gene during infection and transmission. We demonstrate that C. difficile spo0A mutant derivatives can cause intestinal disease but are unable to persist within and effectively transmit between mice. Thus, the C. difficile Spo0A protein plays a key role in persistent infection, including recurrence and host-to-host transmission in mice.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Infecções por Clostridium/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Mutação , Organismos Livres de Patógenos Específicos , Fatores de Transcrição/genética , Virulência
10.
Curr Opin Microbiol ; 65: 131-137, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856509

RESUMO

The human pathogen Clostridioides difficile colonises the gastrointestinal tract following antibiotic exposure, which causes perturbations in the beneficial microbiome. An unusual feature of C. difficile among the gut microbiota is its ability to produce high concentrations of the antimicrobial compound para-cresol, which selectively targets Gram-negative bacteria. Production of p-cresol occurs either by: (a) tyrosine fermentation via the intermediate para-hydroxyphenylacetate (p-HPA), or (b) direct turnover of exogenous p-HPA in the human gut. p-HPA is decarboxylated to produce p-cresol, by the action of HpdBCA decarboxylase encoded by the hpdBCA operon. HpdBCA decarboxylase production is induced at the transcriptional level by elevated p-HPA, which causes elevated p-cresol production, that significantly reduces microbiome diversity and richness. This deleterious effect of p-cresol on the beneficial gut microbiome is advantageous for C. difficile pathogenesis and infection relapse. Inhibiting this pathway would provide a highly specific therapeutic.


Assuntos
Carboxiliases , Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carboxiliases/metabolismo , Carboxiliases/uso terapêutico , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Cresóis , Bactérias Gram-Negativas/metabolismo , Humanos
11.
J Bacteriol ; 193(4): 1007-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169493

RESUMO

Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Fator sigma/genética
12.
BMC Microbiol ; 11: 86, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21527013

RESUMO

BACKGROUND: Clostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol. RESULTS: We show that the PCR-ribotype 027 strain R20291 quantitatively produced more p-cresol in-vitro and was significantly more tolerant to p-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to p-HPA was only observed under certain conditions. We constructed gene inactivation mutants in the hpdBCA operon in strains R20291 and 630Δerm which curtails their ability to produce p-cresol, confirming the role of these genes in p-cresol production. The mutants were equally able to tolerate p-cresol compared to the respective parent strains, suggesting that tolerance to p-cresol is not linked to its production. CONCLUSIONS: C. difficile converts tyrosine to p-cresol, utilising the hpdBCA operon in C. difficile strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/toxicidade , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Cresóis/metabolismo , Cresóis/toxicidade , Farmacorresistência Bacteriana , Técnicas de Inativação de Genes , Genes Bacterianos , Humanos , Redes e Vias Metabólicas/genética , Óperon , Tirosina/metabolismo
13.
Front Cell Infect Microbiol ; 11: 757599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778108

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and is capable of causing severe symptoms, such as pseudomembranous colitis and toxic megacolon. An unusual feature of C. difficile is the distinctive production of high levels of the antimicrobial compound para-cresol. p-Cresol production provides C. difficile with a competitive colonization advantage over gut commensal species, in particular, Gram-negative species. p-Cresol is produced by the conversion of para-hydroxyphenylacetic acid (p-HPA) via the actions of HpdBCA decarboxylase coded by the hpdBCA operon. Host cells and certain bacterial species produce p-HPA; however, the effects of p-HPA on the viability of C. difficile and other gut microbiota are unknown. Here we show that representative strains from all five C. difficile clades are able to produce p-cresol by two distinct mechanisms: (i) via fermentation of p-tyrosine and (ii) via uptake and turnover of exogenous p-HPA. We observed strain-specific differences in p-cresol production, resulting from differential efficiency of p-tyrosine fermentation; representatives of clade 3 (CD305) and clade 5 (M120) produced the highest levels of p-cresol via tyrosine metabolism, whereas the toxin A-/B+ isolate from clade 4 (M68) produced the lowest level of p-cresol. All five lineages share at least 97.3% homology across the hpdBCA operon, responsible for decarboxylation of p-HPA to p-cresol, suggesting that the limiting step in p-cresol production may result from tyrosine to p-HPA conversion. We identified that elevated intracellular p-HPA, modulated indirectly via CodY, controls p-cresol production via inducing the expression of HpdBCA decarboxylase ubiquitously in C. difficile populations. Efficient turnover of p-HPA is advantageous to C. difficile as p-HPA has a deleterious effect on the growth of C. difficile and other representative Gram-negative gut bacteria, transduced potentially by the disruption of membrane permeability and release of intracellular phosphate. This study provides insights into the importance of HpdBCA decarboxylase in C. difficile pathogenesis, both in terms of p-cresol production and detoxification of p-HPA, highlighting its importance to cell survival and as a highly specific therapeutic target for the inhibition of p-cresol production across C. difficile species.


Assuntos
Clostridioides difficile , Cresóis/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Descarboxilação , Fenilacetatos/metabolismo
14.
Sci Rep ; 11(1): 3244, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547340

RESUMO

Clostridioides difficile is the leading cause of nosocomial antibiotic-associated diarrhoea worldwide, yet there is little insight into intestinal tract colonisation and relapse. In many bacterial species, the secondary messenger cyclic-di-GMP mediates switching between planktonic phase, sessile growth and biofilm formation. We demonstrate that c-di-GMP promotes early biofilm formation in C. difficile and that four cell surface proteins contribute to biofilm formation, including two c-di-GMP regulated; CD2831 and CD3246, and two c-di-GMP-independent; CD3392 and CD0183. We demonstrate that C. difficile biofilms are composed of extracellular DNA (eDNA), cell surface and intracellular proteins, which form a protective matrix around C. difficile vegetative cells and spores, as shown by a protective effect against the antibiotic vancomycin. We demonstrate a positive correlation between biofilm biomass, sporulation frequency and eDNA abundance in all five C. difficile lineages. Strains 630 (RT012), CD305 (RT023) and M120 (RT078) contain significantly more eDNA in their biofilm matrix than strains R20291 (RT027) and M68 (RT017). DNase has a profound effect on biofilm integrity, resulting in complete disassembly of the biofilm matrix, inhibition of biofilm formation and reduced spore germination. The addition of exogenous DNase could be exploited in treatment of C. difficile infection and relapse, to improve antibiotic efficacy.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Clostridioides difficile/fisiologia , GMP Cíclico/análogos & derivados , DNA Bacteriano/metabolismo , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/ultraestrutura , Infecções por Clostridium/microbiologia , GMP Cíclico/metabolismo , Humanos
15.
Expert Opin Ther Targets ; 25(11): 949-963, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793686

RESUMO

INTRODUCTION: Clostridioides difficile infection (CDI) remains a worldwide clinical problem. Increased incidence of primary infection, occurrence of hypertoxigenic ribotypes, and more frequent occurrence of drug resistant, recurrent, and non-hospital CDI, emphasizes the urgent unmet need of discovering new therapeutic targets. AREAS COVERED: We searched PubMed and Web of Science databases for articles identifying novel therapeutic targets or treatments for C. difficile from 2001 to 2021. We present an updated review on current preclinical efforts on designing inhibitory compounds against these drug targets and indicate how these could become the focus of future therapeutic approaches. We also evaluate the increasing exploitability of gut microbial-derived metabolites and host-derived therapeutics targeting VEGF-A, immune targets and pathways, ion transporters, and microRNAs as anti-C. difficile therapeutics, which have yet to reach clinical trials. Our review also highlights the therapeutic potential of re-purposing currently available agents . We conclude by considering translational hurdles and possible strategies to mitigate these problems. EXPERT OPINION: Considerable progress has been made in the development of new anti-CDI drug candidates. Nevertheless, a greater comprehension of CDI pathogenesis and host-microbe interactions is beginning to uncover potential novel therapeutic targets, which can be exploited to plug gaps in the CDI drug discovery pipeline.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Humanos
16.
J Bacteriol ; 192(2): 599-603, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19915023

RESUMO

Mycobacterium tuberculosis ruvC was induced by DNA damage in a DeltarecA strain despite having an appropriately positioned SOS box to which LexA binds in vitro. An inducible transcript start mapped within the SOS box, and transcriptional fusions identified the promoter. Disruption of the SOS box did not prevent induction, indicating that an alternative mechanism plays a significant role in the control of ruvC expression.


Assuntos
Proteínas de Bactérias/fisiologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Resposta SOS em Genética/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Regiões Promotoras Genéticas/genética
17.
BMC Microbiol ; 8: 177, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18844996

RESUMO

BACKGROUND: Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. RESULTS: The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). CONCLUSION: The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Humanos , Virulência , Fatores de Virulência
18.
J Med Microbiol ; 57(Pt 6): 745-749, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18480332

RESUMO

Clostridium difficile is an important nosocomial pathogen, resulting in antibiotic-associated disease ranging from mild diarrhoea to the life-threatening pseudomembranous colitis. Upon antibiotic exposure, it is believed that the normal bowel microflora of patients is disrupted, allowing C. difficile to proliferate. Significantly, C. difficile is among only a few bacteria able to ferment tyrosine to p-cresol, a phenolic compound that is toxic to other microbes via its ability to interfere with metabolism. Therefore, the ability of different C. difficile strains to produce and tolerate p-cresol may play an important role in the development and severity of C. difficile-associated disease. In this study, it was demonstrated that two C. difficile hypervirulent 027 strains (Stoke Mandeville and BI-16) are more tolerant to p-cresol than other C. difficile strains including 630, CF4 and CD196. Surprising, it was shown that Clostridium sordellii also has a high tolerance to p-cresol, suggesting an overlap in the tolerance pathways in these clostridial species.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Cresóis/farmacologia , Farmacorresistência Bacteriana/fisiologia , Clostridioides difficile/classificação , Clostridioides difficile/crescimento & desenvolvimento , Clostridium perfringens/efeitos dos fármacos , Clostridium sordellii/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos
19.
J Med Microbiol ; 57(Pt 6): 771-775, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18480336

RESUMO

The reported incidence and mortality of Clostridium difficile-associated disease has increased significantly, which in part is likely to be due to the emergence of a new, highly virulent strain in North America and Europe. This epidemic strain, referred to as BI/NAP1/027, has increased virulence, attributed to overexpression of the two toxin-encoding genes, tcdA and tcdB, which may be due to truncation of the negative regulator (tcdC) by a 1 bp deletion. In a previous study of whole-genome comparisons using microarray analysis of 75 C. difficile isolates, it was noted that the 20,027 strains, which formed a hypervirulent clade, possessed a unique hybridization pattern for the 7 toxin B microarray reporters. This unique pattern was conserved in all of these 027 strains. The pattern was different for the 55 non-027 strains tested. These data, along with the knowledge that 027 strains are toxinotype III (i.e. possess a complete tcdB gene of comparable size to toxin reference strain VPI 10463), suggest that the sequence of the N-terminal binding domain of toxin B must be divergent from C. difficile strain 630 (and the other 55 strains tested). Additionally, these 027 strains had comparable hybridization patterns across the whole microarray, as well as for tcdB. Therefore, it was suggested that they share a similar, novel N-terminal binding domain. The aim of this study was to ascertain the sequence variation in tcdB from eight characterized BI/NAP1/027 strains. The study confirmed significant sequence variation of tcdB from the sequenced strain 630 and slight variation in tcdB among the eight 027 strains. These results suggest that toxin B from 027 strains may have a different binding capacity compared with its less-virulent counterparts and may, in addition to the mutated tcdC regulator, be responsible for the increased virulence of 027 strains.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/classificação , Clostridioides difficile/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia
20.
J Med Microbiol ; 61(Pt 1): 49-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21903827

RESUMO

Clostridium difficile is the most common cause of antibiotic-associated diarrhoea worldwide. Over the past 10 years, the incidence and severity of disease have increased in North America and Europe due to the emergence of a hypervirulent clone designated PCR ribotype 027. In this study, we sought to identify phenotypic differences among a collection of 26 presumed PCR ribotype 027 strains from the US and the UK isolated between 1988 and 2008 and also re-evaluated the PCR ribotype. We demonstrated that some of the strains typed as BI by restriction endonuclease analysis, and presumed to be PCR ribotype 027, were in fact other PCR ribotypes such as 176, 198 and 244 due to slight variation in banding pattern compared to the 027 strains. The reassigned 176, 198 and 244 ribotype strains were isolated in the US between 2001 and 2004 and appeared to have evolved recently from the 027 lineage. In addition, the UK strains were more motile and more resistant to most of the antibiotics compared to the US counterparts. We conclude that there should be a heightened awareness of newly identified PCR ribotypes such as 176, 198 and 244, and that they may be as problematic as the notorious 027 strains.


Assuntos
Clostridioides difficile/classificação , Clostridioides difficile/patogenicidade , Enterocolite Pseudomembranosa/epidemiologia , Reação em Cadeia da Polimerase/métodos , Ribotipagem/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Enzimas de Restrição do DNA/metabolismo , Diarreia/epidemiologia , Diarreia/microbiologia , Enterocolite Pseudomembranosa/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA