Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(11): 1377-1389.e8, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37586370

RESUMO

TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais
2.
Protein Eng Des Sel ; 31(10): 375-387, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566669

RESUMO

Attempts to create novel ligand-binding proteins often focus on formation of a binding pocket with shape complementarity against the desired ligand (particularly for compounds that lack distinct polar moieties). Although designed proteins often exhibit binding of the desired ligand, in some cases they display unintended recognition behavior. One such designed protein, that was originally intended to bind tetrahydrocannabinol (THC), was found instead to display binding of 25-hydroxy-cholecalciferol (25-D3) and was subjected to biochemical characterization, further selections for enhanced 25-D3 binding affinity and crystallographic analyses. The deviation in specificity is due in part to unexpected altertion of its conformation, corresponding to a significant change of the orientation of an α-helix and an equally large movement of a loop, both of which flank the designed ligand-binding pocket. Those changes led to engineered protein constructs that exhibit significantly more contacts and complementarity towards the 25-D3 ligand than the initial designed protein had been predicted to form towards its intended THC ligand. Molecular dynamics simulations imply that the initial computationally designed mutations may contribute to the movement of the helix. These analyses collectively indicate that accurate prediction and control of backbone dynamics conformation, through a combination of improved conformational sampling and/or de novo structure design, represents a key area of further development for the design and optimization of engineered ligand-binding proteins.


Assuntos
Engenharia de Proteínas , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Calcifediol/metabolismo , Cristalografia por Raios X , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Especificidade por Substrato
3.
Ultramicroscopy ; 107(4-5): 414-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17126489

RESUMO

We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{0001} at 20kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

4.
Ultramicroscopy ; 111(5): 320-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21396526

RESUMO

For precise orientation and strain measurements, advanced Electron Backscatter Diffraction (EBSD) techniques require both accurate calibration and reproducible measurement of the system geometry. In many cases the pattern centre (PC) needs to be determined to sub-pixel accuracy. The mechanical insertion/retraction, through the Scanning Electron Microscope (SEM) chamber wall, of the electron sensitive part of modern EBSD detectors also causes alignment and positioning problems and requires frequent monitoring of the PC. Optical alignment and lens distortion issues within the scintillator, lens and charge-coupled device (CCD) camera combination of an EBSD detector need accurate measurement for each individual EBSD system. This paper highlights and quantifies these issues and demonstrates the determination of the pattern centre using a novel shadow-casting technique with a precision of ∼10µm or ∼1/3 CCD pixel.

5.
Ultramicroscopy ; 110(7): 761-2, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20223590

RESUMO

This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA