RESUMO
Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Osteoporose , Idoso , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Transcriptoma , Microglia , Osteoporose/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz ExtracelularRESUMO
Ohtahara syndrome, also known as type 4 of Early Infantile Epileptic Encephalopathy with suppression bursts (EIEE-4) is currently an untreatable disorder that presents with seizures and impaired cognition. EIEE-4 patients have mutations most frequently in the STXBP1 gene encoding a Sec protein, munc18-1. The exact molecular mechanism of how these munc18-1 mutations cause impaired cognition, remains elusive. The leading haploinsufficiency hypothesis posits that mutations in munc18-1 render the protein unstable leading to its degradation. Expression driven by the healthy allele is not sufficient to maintain the physiological function resulting in haploinsufficiency. The aim of this study has been to understand how munc18-1 haploinsufficiency causes cognitive impairment seen in EIEE-4. Here we present results from behavioral to cellular effects from a mouse model of munc18-1 haploinsufficiency. Munc18-1 heterozygous knock-out mice showed impaired spatial learning and memory in behavior tests as well as reduced synaptic plasticity in hippocampal CA1 long-term potentiation. Cultured munc18-1 heterozygous hippocampal neurons had significantly slower rate of synaptic vesicle release and decreased readily releasable vesicle pool compared to wild-type control neurons in fluorescent FM dye assays. These results demonstrate that reduced munc18-1 levels are sufficient to impair learning and memory by reducing neurotransmitter release. Therefore, our study implicates munc18-1 haploinsufficiency as a primary cause of cognitive impairment seen in EIEE-4 patients.
Assuntos
Haploinsuficiência/genética , Aprendizagem/fisiologia , Memória/fisiologia , Proteínas Munc18/genética , Espasmos Infantis/genética , Animais , Encéfalo/fisiopatologia , Heterozigoto , Camundongos Knockout , Mutação/genética , Neurônios/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismoRESUMO
The TGFß family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compacts, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared.
Assuntos
Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Glucose/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Mutação , Miostatina/genética , Tecido Adiposo Branco/diagnóstico por imagem , Animais , Glicemia/metabolismo , Western Blotting , Fluordesoxiglucose F18 , Proteínas Ativadoras de GTPase/metabolismo , Teste de Tolerância a Glucose , Coração/anatomia & histologia , Coração/diagnóstico por imagem , Insulina/metabolismo , Rim/anatomia & histologia , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Imagem Multimodal , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/crescimento & desenvolvimento , Tamanho do Órgão/genética , Fosfoproteínas , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos Radiofarmacêuticos , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismoRESUMO
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.
Assuntos
Citoesqueleto de Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Drosophila/genética , Desenvolvimento Muscular/genética , Sarcômeros/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/fisiologia , Miocárdio/metabolismo , Miofibrilas/genética , Miofibrilas/metabolismo , Miosinas/genética , Sarcômeros/fisiologia , Sarcômeros/ultraestruturaRESUMO
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-ß1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Assuntos
Matriz Extracelular/metabolismo , Proteínas Matrilinas/metabolismo , Músculos/fisiologia , Mioblastos/fisiologia , Necrose/terapia , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células/genética , Venenos Elapídicos/administração & dosagem , Humanos , Proteínas Matrilinas/genética , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculos/patologia , Necrose/induzido quimicamente , Ratos , Ratos Wistar , Regeneração/genética , Fatores de TempoRESUMO
BACKGROUND & AIMS: Matrilins are a family of four oligomeric adaptor proteins whose functions in extracellular matrix assembly during pathophysiological events still need to be explored in more detail. Matrilin-2 is the largest family member and the only matrilin expressed in the naive liver. Several studies demonstrate that matrilin-2 interacts with collagen I, fibronectin or laminin-111-nidogen-1 complexes. All these matrix components get upregulated during hepatic scar tissue formation. Therefore, we tested whether matrilin-2 has an influence on the formation and/or the resolution of fibrotic tissue in the mouse liver. METHODS: Fibrosis was induced by infection with an adenovirus encoding cytochrome P450 2D6 (autoimmune liver damage) or by exposure to the hepatotoxin carbon tetrachloride. Fibrosis severity and matrilin-2 expression were assessed by immunohistochemistry. Hepatic stellate cells (HSCs) were isolated and analysed by immunocytochemistry and Transwell migration assays. RESULTS: Both autoimmune as well as chemically induced liver damage led to simultaneous upregulation of matrilin-2 and collagen I expression. Discontinuation of carbon tetrachloride exposure resulted in concomitant dissolution of both proteins. Activated HSCs were the source of de novo matrilin-2 expression. Comparing wild type and matrilin-2-deficient mice, no differences were detected in fibronectin and collagen I upregulation and resolution kinetics as well as amount or location of fibronectin and collagen I production and degradation. CONCLUSIONS: Our findings suggest that the absence of matrilin-2 has no effect on HSC activation and regression kinetics, synthetic activity, proliferative capacity, motility, or HSC apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatite Autoimune/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Animais , Apoptose , Linhagem Celular , Movimento Celular , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Células Estreladas do Fígado/patologia , Hepatite Autoimune/genética , Hepatite Autoimune/patologia , Humanos , Cinética , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas Matrilinas/deficiência , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Transdução de Sinais , Regulação para CimaRESUMO
The architectural high mobility group box 1 (Hmgb1) protein acts as both a nuclear and an extracellular regulator of various biological processes, including skeletogenesis. Here we report its contribution to the evolutionarily conserved, distinctive regulation of the matrilin-1 gene (Matn1) expression in amniotes. We previously demonstrated that uniquely assembled proximal promoter elements restrict Matn1 expression to specific growth plate cartilage zones by allowing varying doses of L-Sox5/Sox6 and Nfi proteins to fine-tune their Sox9-mediated transactivation. Here, we dissected the regulatory mechanisms underlying the activity of a conserved distal promoter element 1. We show that this element carries three Sox-binding sites, works as an enhancer in vivo, and allows promoter activation by the Sox5/6/9 chondrogenic trio. In early steps of chondrogenesis, declining Hmgb1 expression overlaps with the onset of Sox9 expression. Unlike repression in late steps, Hmgb1 overexpression in early chondrogenesis increases Matn1 promoter activation by the Sox trio, and forced Hmgb1 expression in COS-7 cells facilitates induction of Matn1 expression by the Sox trio. The conserved Matn1 control elements bind Hmgb1 and SOX9 with opposite efficiency in vitro. They show higher HMGB1 than SOX trio occupancy in established chondrogenic cell lines, and HMGB1 silencing greatly increases MATN1 and COL2A1 expression. Together, these data thus suggest a model whereby Hmgb1 helps recruit the Sox trio to the Matn1 promoter and thereby facilitates activation of the gene in early chondrogenesis. We anticipate that Hmgb1 may similarly affect transcription of other cartilage-specific genes.
Assuntos
Condrogênese/genética , Proteína HMGB1/metabolismo , Proteínas Matrilinas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXD/metabolismo , Animais , Sítios de Ligação , Western Blotting , Células COS , Células Cultivadas , Embrião de Galinha , Chlorocebus aethiops , Condrócitos/citologia , Condrócitos/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Proteína HMGB1/genética , Humanos , Proteínas Matrilinas/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXD/genéticaRESUMO
Two themes are coming to the forefront in this decade: Cognitive impairment of an aging population and the quantum leap in developing artificial intelligence (AI). Both can be described as growing exponentially and presenting serious challenges. Although many questions have been addressed about the dangers of AI, we want to go beyond the fearful aspects of this topic and focus on the possible contribution of AI to solve the problem of chronic disorders of the elderly leading to cognitive impairment, like Alzheimer's disease, Parkinson's disease, and Lewy body dementia. Our second goal is to look at the ways in which modern neuroscience can influence the future design of computers and the development of AI. We wish to honor the memory of Dr. John von Neumann, who came up with many breakthrough details of the first electronic computer. Remarkably, Dr. von Neumann dedicated his last book to the comparison of the human brain and the computer as it stood in those years of the mid-1950s. We will point out how his ideas are more relevant than ever in the age of supercomputers, AI and brain implants.
RESUMO
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
RESUMO
Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aß) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear. In this study, we examined the expression of Cu transport proteins in the brains of AD mouse models as well as their involvement in Aß42-induced brain endothelial barrier dysfunction. We found that the Cu uptake transporter CTR1 was upregulated, while the Cu exporter ATP7A and/or ATP7B were downregulated in the hippocampus of AD mouse models, and in Aß42-treated human brain microvascular endothelial cells (hBMECs). In the 5xFAD AD mouse model, Cu levels (assessed by ICP-MS) were elevated in the hippocampus. Moreover, Aß42-induced reactive oxygen species (ROS) production, ROS-dependent loss in barrier function in hBMEC (measured by transendothelial electrical resistance), and tyrosine phosphorylation of VE-cadherin were all inhibited by either a membrane permeable Cu chelator or by knocking down CTR1 expression. These findings suggest that dysregulated expression of Cu transport proteins may lead to intracellular Cu accumulation in the AD brain, and that Aß42 promotes ROS-dependent brain endothelial barrier dysfunction and VE-Cadherin phosphorylation in a CTR1-Cu-dependent manner. Our study uncovers the critical role of Cu transport proteins in oxidative stress-related loss of BBB integrity in AD. Highlights: Upregulation of the Cu importer CTR1 and downregulation of the Cu exporter ATP7A in the hippocampus of AD mouse modelsAß42 increases CTR1 expression while reduces ATP7A and ATP7B levels in human brain microvascular ECs.Aß42 triggers increased reactive oxygen species (ROS) production in human brain microvascular ECs through a CTR1- and Cu-dependent manner.Aß42 induces endothelial barrier dysfunction in human brain microvascular ECs through a CTR1-Cu-ROS-pendent manner.
RESUMO
Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aß) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear. In this study, we examined the expression of Cu transport proteins in the brains of AD mouse models as well as their involvement in Aß42-induced brain endothelial barrier dysfunction. We found that the Cu uptake transporter CTR1 was upregulated, while the Cu exporter ATP7A was downregulated in the hippocampus of AD mouse models and in Aß42-treated human brain microvascular endothelial cells (hBMECs). In the 5xFAD AD mouse model, Cu levels (assessed by ICP-MS) were elevated in the hippocampus. Moreover, in cultured hBMECs, Aß42-induced reactive oxygen species (ROS) production, ROS-dependent loss in barrier function (measured by transendothelial electrical resistance), and tyrosine phosphorylation of CDH5 were all inhibited by either a membrane permeable Cu chelator or by knocking down CTR1 expression. These findings suggest that dysregulated expression of Cu transport proteins may lead to intracellular Cu accumulation in the AD brain, and that Aß42 promotes ROS-dependent brain endothelial barrier dysfunction and CDH5 phosphorylation in a CTR1-Cu-dependent manner. Our study uncovers the critical role of Cu transport proteins in oxidative stress-related loss of BBB integrity in AD.
RESUMO
Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.
Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Demência/etiologia , Encéfalo/patologiaRESUMO
Strong epidemiological and experimental evidence indicate that hypertension in the elderly predisposes to the development of Alzheimer's disease (AD), but the underlying mechanisms remain elusive. The present study was designed to characterize the additive/synergistic effects of hypertension and aging on the expression of genes involved in ß-amyloid generation and AD in the hippocampus, an area of brain contributing to higher cognitive function, which is significantly affected by AD both in humans and in mouse models of the disease. To achieve that goal, we induced hypertension in young (3 mo) and aged (24 mo) C57BL/6 mice by chronic (4 wk) infusion of angiotensin II and assessed changes in hippocampal mRNA expression of genes involved in amyloid precursor protein (APP)-dependent signaling, APP cleavage, Aß processing and Aß-degradation, synaptic function, dysregulation of microtubule-associated τ protein, and apolipoprotein-E signaling. Aged hypertensive mice exhibited spatial memory impairments in the Y-maze and impaired performance in the novel object recognition assay. Surprisingly, hypertension in aging did not increase the expression of APP, ß- and γ-secretases, or genes involved in tauopathy. These genes are all involved in the early onset form of AD. Yet, hypertension in aging was associated with changes in hippocampal expression of APP binding proteins, e.g., [Mint3/amyloid ß A4 precursor protein-binding family A member 3 (APBA3), Fe65/amyloid ß A4 precursor protein-binding family B member 1 (APBB1)], amyloid ß (A4) precursor-like protein 1 (APLP1), muscarinic M1 receptor, and serum amyloid P component, all of which may have a role in the pathogenesis of late-onset AD. The hippocampal gene expression signature observed in aged hypertensive mice in the present study provides important clues for subsequent studies to elucidate the mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of AD.
Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/biossíntese , Hipocampo/metabolismo , Hipertensão/genética , RNA Mensageiro/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Hipertensão/complicações , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptor Muscarínico M1/genética , Componente Amiloide P Sérico/genéticaRESUMO
Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⺠channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1-2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.
Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Expressão Gênica , Ventrículos do Coração/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Envelhecimento/genética , Western Blotting , Cardiomiopatia Dilatada/patologia , Feminino , Ventrículos do Coração/patologia , Humanos , Masculino , Potenciais da Membrana , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto JovemRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options. RESULTS: In this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size. CONCLUSION: These results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Talidomida/análogos & derivados , Talidomida/farmacologia , Animais , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Dietilnitrosamina , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Feminino , Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Talidomida/farmacocinética , Carga Tumoral/efeitos dos fármacosRESUMO
Microinjected transgenes, both large and small, are known to insert randomly into the mouse genome. Traditional methods of mapping a transgene are challenging, thus complicating breeding strategies and accurate interpretation of phenotypes, particularly when a transgene disrupts critical coding or noncoding sequences. As the vast majority of transgenic mouse lines remain unmapped, we developed CRISPR-Cas9 Long-Read Sequencing (CRISPR-LRS) to ascertain transgene integration loci. This novel approach mapped a wide size range of transgenes and uncovered more complex transgene-induced host genome re-arrangements than previously appreciated. CRISPR-LRS offers a facile, informative approach to establish robust breeding practices and will enable researchers to study a gene without confounding genetic issues. Finally, CRISPR-LRS will find utility in rapidly and accurately interrogating gene/genome editing fidelity in experimental and clinical settings.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Transgenes , Genoma/genética , Camundongos TransgênicosRESUMO
Synaptobrevin-2 (VAMP-2), the major SNARE protein of synaptic vesicles, is required for fast calcium-triggered synaptic-vesicle exocytosis. Here we show that synaptobrevin-2 is also essential for fast synaptic-vesicle endocytosis. We demonstrate that after depletion of the readily releasable vesicle pool, replenishment of the pool is delayed by knockout of synaptobrevin. This delay was not from a loss of vesicles, because the total number of pre-synaptic vesicles, docked vesicles and actively recycling vesicles was unaffected. However, altered shape and size of the vesicles in synaptobrevin-deficient synapses suggests a defect in endocytosis. Consistent with such a defect, the stimulus-dependent endocytosis of horseradish peroxidase and fluorescent FM1-43 were delayed, indicating that fast vesicle endocytosis may normally be nucleated by a SNARE-dependent coat. Thus, synaptobrevin is essential for two fast synapse-specific membrane trafficking reactions: fast exocytosis for neurotransmitter release and fast endocytosis that mediates rapid reuse of synaptic vesicles.
Assuntos
Endocitose/fisiologia , Proteínas de Membrana/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Peroxidase do Rábano Silvestre/metabolismo , Técnicas In Vitro , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas R-SNARE , Vesículas Sinápticas/metabolismoRESUMO
During mitosis, cells detach, and the cell-matrix interactions become restricted. At the completion of cytokinesis, the two daughter cells are still connected transiently by an intercellular bridge (ICB), which is subjected to abscission, as the terminal step of cytokinesis. Cell adhesion to the matrix is mediated by syndecan-4 (SDC4) transmembrane heparan sulfate proteoglycan. Our present work demonstrated that SDC4 promotes cytokinesis in a phosphorylation-dependent manner in MCF-7 breast adenocarcinoma cells. The serine179-phosphorylation and the ectodomain shedding of SDC4 changed periodically in a cell cycle-dependent way reaching the maximum at G2/M phases. On the contrary, the phospho-resistant Ser179Ala mutant abrogated the shedding. The phosphorylated full-length and shed remnants enriched along the mitotic spindles, and subsequently in the ICBs, however, proper membrane insertion was necessary for midbody localization. Expression of phosphomimicking Ser179Glu SDC4 resulted in incomplete abscission, whereas expression of the phospho-resistant SDC4 led to giant, multinucleated cells.
Assuntos
Citocinese/fisiologia , Sindecana-4/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Substituição de Aminoácidos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Células Gigantes/metabolismo , Células Gigantes/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Fuso Acromático/metabolismo , Sindecana-4/química , Sindecana-4/genéticaRESUMO
Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.
Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Plasticidade Neuronal/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Animais , Cerebelo/patologia , Feminino , Masculino , Transtornos Motores/genética , Transtornos Motores/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Long-Evans , Ratos TransgênicosRESUMO
Alpha-latrotoxin induces neurotransmitter release by stimulating synaptic vesicle exocytosis via two mechanisms: (1) A Ca(2+)-dependent mechanism with neurexins as receptors, in which alpha-latrotoxin acts like a Ca(2+) ionophore, and (2) a Ca(2+)-independent mechanism with CIRL/latrophilins as receptors, in which alpha-latrotoxin directly stimulates the transmitter release machinery. Here, we show that the Ca(2+)-independent release mechanism by alpha-latrotoxin requires the synaptic SNARE-proteins synaptobrevin/VAMP and SNAP-25, and, at least partly, the synaptic active-zone protein Munc13-1. In contrast, the Ca(2+)-dependent release mechanism induced by alpha-latrotoxin does not require any of these components of the classical synaptic release machinery. Nevertheless, this type of exocytotic neurotransmitter release appears to fully operate at synapses, and to stimulate exocytosis of the same synaptic vesicles that participate in physiological action potential-triggered release. Thus, synapses contain two parallel and independent pathways of Ca(2+)-triggered exocytosis, a classical, physiological pathway that operates at the active zone, and a novel reserve pathway that is recruited only when Ca(2+) floods the synaptic terminal.