Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669473

RESUMO

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Assuntos
Regeneração Óssea , Vasos Linfáticos , Idoso , Animais , Humanos , Camundongos , Células Endoteliais , Linfangiogênese
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597309

RESUMO

The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.


Assuntos
Arritmias Cardíacas/genética , Frequência Cardíaca/genética , Proteínas de Membrana/fisiologia , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cálcio/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Coração/embriologia , Coração/fisiopatologia , Transporte de Íons , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Organogênese/genética , Periodicidade , Potássio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Development ; 145(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752386

RESUMO

Atrial natriuretic peptide (nppa/anf) and brain natriuretic peptide (nppb/bnp) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy; however, their genomic location in cis has impeded formal analysis. Using genome editing, we have generated mutants for nppa and nppb, and found that single mutants were indistinguishable from wild type, whereas nppa/nppb double mutants displayed heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4, tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirmed cardiac jelly expansion in nppa/nppb double mutants. Finally, bmp4 knockdown rescued the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber.


Assuntos
Fator Natriurético Atrial/genética , Coração/embriologia , Peptídeo Natriurético Encefálico/genética , Receptores do Fator Natriurético Atrial/genética , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Edição de Genes , Cardiopatias Congênitas/genética , Hialuronan Sintases/metabolismo , Proteínas com Domínio T/metabolismo , Versicanas/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38091997

RESUMO

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Diferenciação Celular/genética , Proliferação de Células
5.
Front Physiol ; 12: 624928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767633

RESUMO

The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.

6.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536212

RESUMO

Blood vessels provide supportive microenvironments for maintaining tissue functions. Age-associated vascular changes and their relation to tissue aging and pathology are poorly understood. Here, we perform 3D imaging of young and aging vascular beds. Multiple organs in mice and humans demonstrate an age-dependent decline in vessel density and pericyte numbers, while highly remodeling tissues such as skin preserve the vasculature. Vascular attrition precedes the appearance of cellular hallmarks of aging such as senescence. Endothelial VEGFR2 loss-of-function mice demonstrate that vascular perturbations are sufficient to stimulate cellular changes coupled with aging. Age-associated tissue-specific molecular changes in the endothelium drive vascular loss and dictate pericyte to fibroblast differentiation. Lineage tracing of perivascular cells with inducible PDGFRß and NG2 Cre mouse lines demonstrated that increased pericyte to fibroblast differentiation distinguishes injury-induced organ fibrosis and zymosan-induced arthritis. To spur further discoveries, we provide a freely available resource with 3D vascular and tissue maps.

7.
Open Biol ; 9(10): 190144, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31575330

RESUMO

Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.


Assuntos
Comunicação Autócrina , Desenvolvimento Ósseo , Doenças Ósseas/metabolismo , Neovascularização Fisiológica , Animais , Homeostase , Humanos
8.
Dev Cell ; 40(2): 123-136, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28118600

RESUMO

Angiogenesis is responsible for tissue vascularization during development, as well as in pathological contexts, including cancer and ischemia. Vascular endothelial growth factors (VEGFs) regulate angiogenesis by acting through VEGF receptors to induce endothelial cell signaling. VEGF is processed in the extracellular matrix (ECM), but the complexity of ECM control of VEGF signaling and angiogenesis remains far from understood. In a forward genetic screen, we identified angiogenesis defects in tmem2 zebrafish mutants that lack both arterial and venous Vegf/Vegfr/Erk signaling. Strikingly, tmem2 mutants display increased hyaluronic acid (HA) surrounding developing vessels. Angiogenesis in tmem2 mutants was rescued, or restored after failed sprouting, by degrading this increased HA. Furthermore, oligomerized HA or overexpression of Vegfc rescued angiogenesis in tmem2 mutants. Based on these data, and the known structure of Tmem2, we find that Tmem2 regulates HA turnover to promote normal Vegf signaling during developmental angiogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Ácido Hialurônico/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana/química , Mutação/genética , Neovascularização Fisiológica , Fenótipo , Polimerização , Tronco/irrigação sanguínea , Veias/metabolismo , Proteínas de Peixe-Zebra/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA