RESUMO
BACKGROUND: Helicobacter suis (H. suis) is the most prevalent gastric non-H. pylori Helicobacter species in humans. This bacterium mainly colonizes the stomach of pigs, but it has also been detected in the stomach of nonhuman primates. The aim of this study was to obtain better insights into potential differences between pig- and primate-associated H. suis strains in virulence and pathogenesis. MATERIALS AND METHODS: In vitro-isolated H. suis strains obtained from pigs, cynomolgus monkeys (Macaca fascicularis), and rhesus monkeys (Macaca mulatta) were used for intragastric inoculation of BALB/c mice and Mongolian gerbils. Nine weeks and six months later, samples of the stomach of inoculated and control animals were taken for PCR analysis and histopathological examination. RESULTS: The cynomolgus monkey-associated H. suis strain only colonized the stomach of mice, but not of Mongolian gerbils. All other H. suis strains colonized the stomach in both rodent models. In all colonized animals, severe gastric inflammation was induced. Gastric lymphoid follicles and destruction of the antral epithelium were observed in infected gerbils, but not in mice. Infection with both pig- and primate-associated H. suis strains evoked a similar marked Th17 response in mice and gerbils, accompanied by increased CXCL-13 expression levels. CONCLUSIONS: Apart from the cynomolgus monkey-associated strain which was unable of colonizing the stomach of Mongolian gerbils, no substantial differences in virulence were found in rodent models between in vitro-cultured pig-associated, cynomolgus monkey-associated and rhesus monkey-associated H. suis strains. The experimental host determines the outcome of the immune response against H. suis infection, rather than the original host.
Assuntos
Gastrite/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter heilmannii/isolamento & purificação , Helicobacter heilmannii/patogenicidade , Animais , Quimiocina CXCL13/análise , Modelos Animais de Doenças , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica , Gerbillinae , Histocitoquímica , Macaca fascicularis/microbiologia , Macaca mulatta/microbiologia , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Suínos/microbiologia , Células Th17/imunologia , VirulênciaRESUMO
Helicobacter (H.) suis can colonize the stomach of pigs as well as humans, causing chronic gastritis and other gastric pathological changes including gastric ulceration and mucosa-associated lymphoid tissue (MALT) lymphoma. Recently, a virulence factor of H. suis, γ-glutamyl transpeptidase (GGT), has been demonstrated to play an important role in the induction of human gastric epithelial cell death and modulation of lymphocyte proliferation depending on glutamine and glutathione catabolism. In the present study, the relevance of GGT in the pathogenesis of H. suis infection was studied in mouse and Mongolian gerbil models. In addition, the relative importance of H. suis GGT was compared with that of the H. pylori GGT. A significant and different contribution of the GGT of H. suis and H. pylori was seen in terms of bacterial colonization, inflammation and the evoked immune response. In contrast to H. pyloriΔggt strains, H. suisΔggt strains were capable of colonizing the stomach at levels comparable to WT strains, although they induced significantly less overall gastric inflammation in mice. This was characterized by lower numbers of T and B cells, and a lower level of epithelial cell proliferation. In general, compared to WT strain infection, ggt mutant strains of H. suis triggered lower levels of Th1 and Th17 signature cytokine expression. A pronounced upregulation of B-lymphocyte chemoattractant CXCL13 was observed, both in animals infected with WT and ggt mutant strains of H. suis. Interestingly, H. suis GGT was shown to affect the glutamine metabolism of gastric epithelium through downregulation of the glutamine transporter ASCT2.
Assuntos
Proteínas de Bactérias/genética , Infecções por Helicobacter/veterinária , Helicobacter heilmannii/fisiologia , Helicobacter pylori/fisiologia , Fatores de Virulência/genética , gama-Glutamiltransferase/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Gerbillinae , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Fatores de Virulência/metabolismo , gama-Glutamiltransferase/metabolismoRESUMO
BACKGROUND: Helicobacter (H.) suis causes gastritis and decreased weight gain in pigs. It is also the most prevalent non-Helicobacter pylori Helicobacter species in humans with gastric disease. H. suis is extremely fastidious, and so far, biphasic culture conditions were essential for isolation and culture, making it impossible to obtain single colonies. Hence, cultures obtained from an individual animal may contain multiple H. suis strains, which is undesirable for experiments aiming for instance at investigating H. suis strain differences. MATERIALS AND METHODS: Pure cultures of H. suis were established by growing bacteria as colonies on 1% brucella agar plates, followed by purification and enrichment by biphasic subculture. Characteristics of these single colony-derived strains were compared with those of their parent strains using multilocus sequence typing (MLST) and by studying bacterium-host interactions using a gastric epithelial cell line and Mongolian gerbil model. RESULTS: The purification/enrichment procedure required a nonstop culture of several weeks. For 4 of 17 H. suis strains, MLST revealed differences between parental and single colony-derived strains. For three of four single colony-derived strains tested, the cell death-inducing capacity was higher than for the parental strain. One single colony-derived strain lost its capacity to colonize Mongolian gerbils. For the four other strains tested, colonization capacity and histopathologic changes were similar to what has been described when using strains with only a history of limited biphasic culture. CONCLUSIONS: A method was developed to obtain single colony-derived H. suis strains, but this procedure may affect the bacterial genotype and phenotype.
Assuntos
Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter heilmannii/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Linhagem Celular , Células Clonais , Modelos Animais de Doenças , Células Epiteliais , Feminino , Genótipo , Gerbillinae , Helicobacter heilmannii/genética , Humanos , Tipagem de Sequências Multilocus , Fenótipo , SuínosRESUMO
With academic internationalisation at full speed, English is increasingly used as a medium of instruction in higher education. The question arises of whether unbalanced bilinguals remember study materials in a non-native language (L2) as well as in a first language (L1). In previous studies, we found a disadvantage for students recalling short, expository texts in L2 compared with L1, but no such disadvantage for a true/false recognition test, not even on delayed tests after a month. As no additional forgetting occurs, the quality of the memory trace seems to be equally strong in both languages and the recall cost might be caused by a lack of production skill in L2. To test this hypothesis, we ran experiments in L1-L1, L2-L1, and L2-L2 conditions with free and cued recall (short open questions). We replicate the L2 free recall cost reported earlier and show that it is due to the encoding in L2 rather than to an L2 production cost. In contrast, we found no significant difference in a new pair of texts with short, cued recall questions, though there was a trend in the expected direction. A summary of the effect sizes obtained so far shows a considerable variety in magnitudes (with rather big confidence intervals), suggesting that the cost of studying in L2 depends on several factors such as study time, test requirement, and language proficiency level.
Assuntos
Sinais (Psicologia) , Rememoração Mental/fisiologia , Multilinguismo , Prática Psicológica , Psicolinguística , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Helicobacter (H.) suis causes gastric pathologies in both pigs and humans. Very little is known on the metabolism of this bacterium and its impact on the host. In this study, we have revealed the importance of the glutamate-generating metabolism, as shown by a complete depletion of glutamine (Gln) in the medium during H. suis culture. Besides Gln, H. suis can also convert glutathione (GSH) to glutamate, and both reactions are catalyzed by the H. suis γ-glutamyltranspeptidase (GGT). Both for H. pylori and H. suis, it has been hypothesized that the degradation of Gln and GSH may lead to a deficiency for the host, possibly initiating or promoting several pathologies. Therefore the in vivo effect of oral supplementation with Gln and GSH was assessed. Oral supplementation with Gln was shown to temper H. suis induced gastritis and epithelial (hyper)proliferation in Mongolian gerbils. Astonishingly, supplementation of the feed with GSH, another GGT substrate, resulted in inflammation and epithelial proliferation levels returning to baseline levels of uninfected controls. This indicates that Gln and GSH supplementation may help reducing tissue damage caused by Helicobacter infection in both humans and pigs, highlighting their potential as a supportive therapy during and after Helicobacter eradication therapy.
Assuntos
Suplementos Nutricionais , Glutationa/administração & dosagem , Glutationa/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter/fisiologia , Estômago/microbiologia , Estômago/patologia , Administração Oral , Aminoácidos/análise , Amônia/metabolismo , Animais , Carboidratos/análise , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Gerbillinae , Glutamina/metabolismo , Glutationa/farmacologia , Helicobacter/efeitos dos fármacos , Helicobacter/crescimento & desenvolvimento , Inflamação/patologia , Antígeno Ki-67/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Viabilidade Microbiana/efeitos dos fármacos , gama-Glutamiltransferase/metabolismoRESUMO
Helicobacter suis (H. suis) is a widespread porcine gastric pathogen, which is also of zoonotic importance. The first goal of this study was to investigate the efficacy of several vaccine adjuvants (CpG-DNA, Curdlan, Freund's Complete and Incomplete, Cholera toxin), administered either subcutaneously or intranasally along with H. suis whole-cell lysate, to protect against subsequent H. suis challenge in a BALB/c infection model. Subcutaneous immunization with Freund's complete (FC)/lysate and intranasal immunization with Cholera toxin (CT)/lysate were shown to be the best options for vaccination against H. suis, as determined by the amount of colonizing H. suis bacteria in the stomach, although adverse effects such as post-immunization gastritis/pseudo-pyloric metaplasia and increased mortality were observed, respectively. Therefore, we decided to test alternative strategies, including sublingual vaccine administration, to reduce the unwanted side-effects. A CCR4 antagonist that transiently inhibits the migration of regulatory T cells was also included as a new adjuvant in this second study. Results confirmed that immunization with CT (intranasally or sublingually) is among the most effective vaccination protocols, but increased mortality was still observed. In the groups immunized subcutaneously with FC/lysate and CCR4 antagonist/lysate, a significant protection was observed. Compared to the FC/lysate immunized group, gastric pseudo-pyloric metaplasia was less severe or even absent in the CCR4 antagonist/lysate immunized group. In general, an inverse correlation was observed between IFN-γ, IL-4, IL-17, KC, MIP-2 and LIX mRNA expression and H. suis colonization density, whereas lower IL-10 expression levels were observed in partially protected animals.
Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas , Infecções por Helicobacter , Helicobacter heilmannii/imunologia , Receptores CCR4/antagonistas & inibidores , Vacinação , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Animais , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Citocinas/imunologia , Feminino , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/patologia , Infecções por Helicobacter/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Receptores CCR4/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologiaRESUMO
Helicobacter suis is a zoonotically important bacterium, that has been associated with gastritis and ulcerative lesions of the pars oesophagea of the stomach in pigs. Its exact role in these pathologies, however, still remains controversial. Therefore, a total of 29 medicated early weaned piglets were inoculated intragastrically or orally, with a total of 2 × 10(9) viable H. suis bacteria and the effect on gastric pathology and weight gain was determined. Twenty-three medicated early weaned piglets were inoculated with a sterile culture medium and used as sham-inoculated controls. The animals were euthanized between 28 and 42 days after inoculation. Infected animals showed a more severe gastritis compared to the control group. There was also a significant reduction of approximately 60 g per day (10%) in weight gain in H. suis inoculated animals compared to the sham-inoculated control animals. In conclusion, this study demonstrates for the first time that a pure in vitro culture of H. suis not only causes gastritis but also a marked decrease of the daily weight gain in experimentally infected pigs.