Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047562

RESUMO

Intranasal drug delivery is convenient and provides a high bioavailability but requires the use of mucoadhesive nanocarriers. Chitosan is a well-established polymer for mucoadhesive applications but can suffer from poor cytocompatibility and stability upon administration. In this work, we present a method to obtain stable and cytocompatible crosslinked chitosan nanoparticles. We used 2,6-pyridinedicarboxylic acid as a biocompatible crosslinker and compared the obtained particles with those prepared by ionotropic gelation using sodium tripolyphosphate. Nanoparticles were tested to evaluate the size and the surface charge, as well as their stability in storage conditions (4 °C), at the nasal cavity temperature (32 °C), and at the body temperature (37 °C). The crosslinked chitosan nanoparticles showed a size around 150 nm and a surface charge of 10.3 mV ± 0.9 mV, both compatible with the intranasal drug administration. Size and surface charge parameters did not significantly vary over time, indicating the good stability of these nanoparticles. We finally tested their cytocompatibility in vitro using SHSY5Y human neuroblastoma and RPMI 2650 human nasal epithelial cells, with positive results. In conclusion, the proposed synthetic system shows an interesting potential as a drug carrier for intranasal delivery.


Assuntos
Quitosana , Nanopartículas , Humanos , Administração Intranasal , Adesivos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos , Tamanho da Partícula
2.
Cell Mol Life Sci ; 79(1): 28, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936031

RESUMO

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.


Assuntos
Autofagia , Capilares/citologia , Radiação Cósmica , Células Endoteliais/efeitos da radiação , Transdução de Sinais , Ausência de Peso , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromossomos Humanos/metabolismo , Citoesqueleto/metabolismo , Dano ao DNA , Fluorescência , Regulação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Mecanotransdução Celular , Modelos Biológicos , Transdução de Sinais/efeitos da radiação , Voo Espacial , Estresse Fisiológico , Homeostase do Telômero , Transcriptoma/genética
3.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613611

RESUMO

Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.


Assuntos
Transtorno do Espectro Autista , Metiltransferases , Animais , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Metiltransferases/genética , Metiltransferases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Comportamento Social
4.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946600

RESUMO

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Assuntos
Anilidas , Benzamidas , Inibidores Enzimáticos , Proteínas dos Microfilamentos , Oxirredutases , Bibliotecas de Moléculas Pequenas , Humanos , Anilidas/química , Anilidas/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Estrutura Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231163

RESUMO

Capillary endothelial cells are responsible for homeostatic responses to organismic and environmental stimulations. When malfunctioning, they may cause disease. Exposure to microgravity is known to have negative effects on astronauts' physiology, the endothelium being a particularly sensitive organ. Microgravity-related dysfunctions are striking similar to the consequences of sedentary life, bed rest, and ageing on Earth. Among different countermeasures implemented to minimize the effects of microgravity, a promising one is artificial gravity. We examined the effects of hypergravity on human microvascular endothelial cells of dermal capillary origin (HMEC-1) treated at 4 g for 15 min, and at 20 g for 15 min, 3 and 6 h. We evaluated cell morphology, gene expression and 2D motility and function. We found a profound rearrangement of the cytoskeleton network, dose-dependent increase of Focal Adhesion kinase (FAK) phosphorylation and Yes-associated protein 1 (YAP1) expression, suggesting cell stiffening and increased proneness to motility. Transcriptome analysis showed expression changes of genes associated with cardiovascular homeostasis, nitric oxide production, angiogenesis, and inflammation. Hypergravity-treated cells also showed significantly improved motility and function (2D migration and tube formation). These results, expanding our knowledge about the homeostatic response of capillary endothelial cells, show that adaptation to hypergravity has opposite effect compared to microgravity on the same cell type.


Assuntos
Capilares/citologia , Células Endoteliais/citologia , Hipergravidade , Neovascularização Fisiológica , Capilares/fisiologia , Linhagem Celular , Movimento Celular , Células Endoteliais/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Homeostase , Humanos , Fosforilação
6.
Int J Dev Biol ; 68(2): 85-91, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39016375

RESUMO

The tRNA-histidine guanylyltransferase 1-like (THG1L), also known as induced in high glucose-1 (IHG-1), encodes for an essential mitochondria-associated protein highly conserved throughout evolution, that catalyses the 3'-5' addition of a guanine to the 5'-end of tRNA-histidine (tRNAHis). Previous data indicated that THG1L plays a crucial role in the regulation of mitochondrial biogenesis and dynamics, in ATP production, and is critically involved in the modulation of apoptosis, cell-cycle progression and survival, as well as in cellular stress responses and redox homeostasis. Dysregulations of THG1L expression play a central role in various pathologies, including nephropathies, and neurodevelopmental disorders often characterized by developmental delay and cerebellar ataxia. Despite the essential role of THG1L, little is known about its expression during vertebrate development. Herein, we examined the detailed spatio-temporal expression of this gene in the developing Xenopus laevis. Our results show that thg1l is maternally inherited and its temporal expression suggests a role during the earliest stages of embryogenesis. Spatially, thg1l mRNA localizes in the ectoderm and marginal zone mesoderm during early stages of development. Then, at tadpole stages, thg1l transcripts mostly localise in neural crests and their derivatives, somites, developing kidney and central nervous system, therefore largely coinciding with territories displaying intense energy metabolism during organogenesis in Xenopus.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Nucleotidiltransferases , Proteínas de Xenopus , Xenopus laevis , Animais , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
7.
Sci Rep ; 13(1): 6025, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055439

RESUMO

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Assuntos
Neuroglia , Retina , Retina/metabolismo , Neuroglia/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células
8.
Cells ; 10(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572137

RESUMO

Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.


Assuntos
Bioengenharia/métodos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/citologia , Animais , Humanos , Degeneração Retiniana/patologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2111-2124, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004710

RESUMO

The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets. MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423). Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways. Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.


Assuntos
Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anilidas/farmacologia , Animais , Benzamidas/farmacologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Masculino , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Neovascularização Fisiológica , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA