Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
STAR Protoc ; 4(2): 102164, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36933222

RESUMO

Developing an in vitro platform to study neuron-oligodendrocyte interaction, particularly myelination, is essential to understand aberrant myelination in neuropsychiatric and neurodegenerative diseases. Here, we provide a controlled, direct co-culture protocol for human induced-pluripotent-stem-cell (hiPSC)-derived neurons and oligodendrocytes on three-dimensional (3D) nanomatrix plates. We describe steps to differentiate hiPSCs into cortical neurons and oligodendrocyte lineage cells on 3D nanofibers. We then detail the detachment and isolation of the oligodendrocyte lineage cells, followed by neuron-oligodendrocyte co-culture in this 3D microenvironment.

2.
Nat Commun ; 11(1): 5163, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057020

RESUMO

Parkinson's disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson's disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/imunologia , Interferon gama/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Microglia/imunologia , Doença de Parkinson/imunologia , Sinalização do Cálcio/genética , Diferenciação Celular , Citocinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Glicólise/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Interferon gama/imunologia , Microscopia Intravital , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microglia/metabolismo , Microtúbulos/metabolismo , Mutação , Fatores de Transcrição NFATC/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1
3.
Cell Death Dis ; 9(6): 698, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899471

RESUMO

The pathological cascade leading from primary storage to neural cell dysfunction and death in metachromatic leukodystrophy (MLD) has been poorly elucidated in human-derived neural cell systems. In the present study, we have modeled the progression of pathological events during the differentiation of patient-specific iPSCs to neuroepithelial progenitor cells (iPSC-NPCs) and mature neurons, astrocytes, and oligodendrocytes at the morphological, molecular, and biochemical level. We showed significant sulfatide accumulation and altered sulfatide composition during the differentiation of MLD iPSC-NPCs into neuronal and glial cells. Changes in sulfatide levels and composition were accompanied by the expansion of the lysosomal compartment, oxidative stress, and apoptosis. The neuronal and glial differentiation capacity of MLD iPSC-NPCs was significantly impaired. We showed delayed appearance and/or reduced levels of oligodendroglial and astroglial markers as well as reduced number of neurons and disorganized neuronal network. Restoration of a functional Arylsulfatase A (ARSA) enzyme in MLD cells using lentiviral-mediated gene transfer normalized sulfatide levels and composition, globally rescuing the pathological phenotype. Our study points to MLD iPSC-derived neural progeny as a useful in vitro model to assess the impact of ARSA deficiency along NPC differentiation into neurons and glial cells. In addition, iPSC-derived neural cultures allowed testing the impact of ARSA reconstitution/overexpression on disease correction and, importantly, on the biology and functional features of human NPCs, with important therapeutic implications.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucodistrofia Metacromática/patologia , Modelos Biológicos , Células-Tronco Neurais/patologia , Neuroglia/patologia , Neurônios/patologia , Apoptose , Glicoesfingolipídeos/biossíntese , Humanos , Lisossomos/metabolismo , Degeneração Neural/patologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sulfoglicoesfingolipídeos/metabolismo
4.
Cell Rep ; 23(10): 2976-2988, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874584

RESUMO

While mitochondrial dysfunction is emerging as key in Parkinson's disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.


Assuntos
Drosophila melanogaster/fisiologia , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias/patologia , NAD/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/análogos & derivados , Doença de Parkinson/patologia , Animais , Autofagia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estresse do Retículo Endoplasmático , Glucosilceramidase/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Atividade Motora , Niacinamida/metabolismo , Doença de Parkinson/fisiopatologia , Compostos de Piridínio , Resposta a Proteínas não Dobradas
5.
Stem Cells Transl Med ; 6(2): 352-368, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191778

RESUMO

Allogeneic fetal-derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient-specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene-therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC-derived neural stem cells (NSCs) showing a reliable "NSC signature" is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS-NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a "gold standard" in a side-by-side comparison when validating the phenotype of hiPS-NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS-NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA-overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA-overexpressing iPSC-derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient-specific ARSA-overexpressing hiPS-NSCs may be used in autologous ex vivo gene therapy protocols to provide long-lasting enzymatic supply in MLD-affected brains. Stem Cells Translational Medicine 2017;6:352-368.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Cerebrosídeo Sulfatase/biossíntese , Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Leucodistrofia Metacromática/cirurgia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Cerebrosídeo Sulfatase/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Indução Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatologia , Camundongos Endogâmicos NOD , Camundongos SCID , Regeneração Nervosa , Células-Tronco Neurais/enzimologia , Fenótipo , Sulfoglicoesfingolipídeos/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA