RESUMO
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and ß-catenin expression as well as nuclear ß-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and ß-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/ß-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
RESUMO
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.
Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Animais , Suínos , Citocinas/metabolismo , Metaloproteinase 9 da Matriz , Receptor 8 Toll-Like , Leite/metabolismo , Lipopolissacarídeos , Peróxido de Hidrogênio , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Colite Ulcerativa/metabolismo , Inflamação/patologia , Vesículas Extracelulares/metabolismo , Cabras , Mucosa Intestinal/metabolismoRESUMO
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-ß, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-ß, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-ß and dexamethasone were characterized by enhanced levels of TGF-ß2, whereas stimulation with dexamethasone, but not TGF-ß2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-ß, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-ß provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Assuntos
Macrófagos , Suínos , Animais , Células Cultivadas , Dexametasona/farmacologia , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fenótipo , Suínos/imunologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Swine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-ß, or dexamethasone. Expression of key cytokine genes (IL1B2, IL33, IL19, IL22, IL26, CCL17, CCL24, IFNA, IFNB) in macrophage subsets were investigated over time. Expression of the genes encoding the two main enzymes of the arginine pathway (ARG1, NOS2), and molecules related to alternative macrophage polarization in human and mice (MMP9, MRC1, FIZZ1, VEGFA) were also assessed. Stimulation with IFN-γ + LPS triggered up-regulation of IL1B2, IFNB, NOS2, whereas IL-4 triggered upregulation of CCL17, CCL24, CXCR2, and ARG1 expression. IL19 and IL22 expression was enhanced by stimulation with IFN-γ + LPS or TGF-ß, but not IL-4, IL-10, or dexamethasone. Our data highlighted some peculiarities in swine, such as induced expression of IL33 after stimulation with IFN-γ + LPS, and no up-regulation of FIZZ1, VEGFA or MMP9 after exposure to any of the M2 polarizing stimuli. A better understanding of porcine macrophage polarization could benefit translational studies using this large animal model.
RESUMO
The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs.
RESUMO
Bacteria-mediated treatments gained increasing attention as alternative therapies against tumors. An attenuated mutant strain of Salmonella enterica serovar Typhimurium (STMΔznuABC) has recently been considered as a potential new anti-cancer strategy. However, it is unclear whether this activity is tumor-induced or species-specific, and no data are available regarding STMΔznuABC on canine mammary tumors (CMTs). This study aimed to investigate the ability of STMΔznuABC in modulating the response of CMTs, focusing on cancer-associated fibroblasts. Four CMT cell lines (CF33, TM51, TM52 TM53) were treated with STMΔznuABC. Then, antiproliferative activity (MTT assay), bacterial invasion, and CMT cell lines gene expression analysis (RT-qPCR) of genes involved in immune response and cancer aggressiveness were evaluated. STMΔznuABC penetrated in TM51, TM52, TM53, and CF33 cell lines, causing a significant reduction of cell viability. Moreover, the expression of several genes was significantly modulated in all CMT cell lines: STMΔznuABC infection determined a significant up-regulation of CXCL8, IL18, IL10, TLR4 and RAD51, while CD14, IL6, CXCR4, P53, PTEN, STAT5, TLR5 and TGFB1 were downregulated in TM53. In CF33, CXCL8 and P53 were upregulated, while MYD88, MD2, IL18, TLR4,5, TGFB1 were downregulated. In TM52, CXCL8, CD44 and MD2 were upregulated and PTEN was downregulated, while in TM51 CXCL8, CD44 and ErbB2 were downregulated. We demonstrated the anti-proliferative and immuno-modulatory activity of STMΔznuABC in CMTs, paving the way for potential new anti-cancer treatments.
RESUMO
Canine Soft Tissue Sarcoma (STS) cell line A-72 has been largely employed for antiviral and antiproliferative studies. However, there are few information on their characteristics. Our aim was to evaluate A-72 expression level of genes and proteins involved in the innate immune response and cell cycle, their ability to respond to infective stressors and their possible use as a cellular model for anti-cancer studies in human and animal medicine. For this purpose, we evaluated the basal expression of immune-related, cell cycle and DNA repair genes on this cell line and tumoral tissues. A-72 ability to respond to a wild-type strain of Salmonella typhimurium was assessed. S. typhimurium showed ability to penetrate A-72 causing pro-inflammatory response accompanied by a decrease of cell viability. IL10 and IL18 genes were not expressed in A-72 while CXCL8, NOS2, CXCR4 and PTEN were highly expressed in all samples and TP53 was slightly expressed, as shown in human STS. Our results outline the ability of A-72 to respond to a bacterial agent by modifying the expression of important genes involved in innate immune response and provide a useful model for in vitro evaluation of new therapeutic approaches that could be translated into the human oncology.
Assuntos
Doenças do Cão , Sarcoma , Animais , Cães , Humanos , Sarcoma/genética , Sarcoma/veterinária , Sarcoma/microbiologia , Linhagem Celular , Salmonella typhimurium/genética , Modelos Animais , Imunidade Inata/genéticaRESUMO
Papillomas are benign epithelial lesions protruding on the epithelial surfaces as finger-like or warty projections. These lesions are often caused by papillomavirus (PV) infection. Congenital papillomas have been reported in foals. However, to date, no evidence of PV infection has been provided. In the present paper, we describe the main clinical-pathological features of a congenital papilloma observed in a foal. In addition, biomolecular tests demonstrated BPV1 infection in the case under study. Such data stimulate further investigations, even on archived samples, aiming to clarifying the etiology of equine congenital papilloma and the clinical relevance, if any, of BPV1 vertical transmission in horses.
RESUMO
Introduction: Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods: In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results: These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion: Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Assuntos
Vesículas Extracelulares , Leite , Animais , Suínos , Leite/metabolismo , Macrófagos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , CabrasRESUMO
Papillomaviruses (PVs) are small, non-enveloped viruses, ubiquitous across the animal kingdom. PVs induce diverse forms of infection, such as cutaneous papillomas, genital papillomatosis, and carcinomas. During a survey on the fertility status of a mare, a novel Equus caballus PV (EcPV) has been identified using Next Generation Sequencing, and it was further confirmed with genome-walking PCR and Sanger sequencing. The complete circular genome 7607 bp long shares 67% average percentage of identity with EcPV9, EcPV2, EcPV1, and EcPV6, justifying a new classification as Equus caballus PV 10 (EcPV10). All EcPV genes are conserved in EcPV10, and phylogenetic analysis indicates that EcPV10 is closely related to EcPV9 and EcPV2, genus Dyoiota 1. A preliminary EcPV10 genoprevalence study, carried out on 216 horses using Real Time PCRs, suggested a low incidence of this isolate (3.7%) compared to EcPVs of the same genus such as EcPV2 and EcPV9 in the same horse population. We hypothesize a transmission mechanism different from the one observed in the closely related EcPV9 and EcPV2 that particularly infect Thoroughbreds. This horse breed is usually submitted to natural mating, thus indicating a possible sexual diffusion. No differences were detected for breeds in terms of susceptibility to EcPV10. Further studies are needed to investigate the molecular mechanisms behind the host and EcPV10 infection to explain the reduced viral spread.
Assuntos
Doenças dos Cavalos , Papiloma , Infecções por Papillomavirus , Cavalos , Animais , Feminino , Filogenia , Papillomaviridae , Reação em Cadeia da Polimerase em Tempo Real , Papiloma/veterináriaRESUMO
[This corrects the article DOI: 10.3389/fimmu.2023.1209898.].
RESUMO
Extracellular vesicles (EVs) are lipid bilayer nano-dimensional spherical structures and act mainly as signaling mediators between cells, in particular modulating immunity and inflammation. Milk-derived EVs (mEVs) can have immunomodulatory and anti-inflammatory effects, and milk is one of the most promising food sources of EVs. In this context, this study aimed to evaluate bovine mEVs anti-inflammatory and immunomodulating effects on an in vitro co-culture (Caco-2 and THP-1) model of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release through ELISA. After establishing a pro-inflammatory environment due to IFN-γ and LPS stimuli, CXCL8, IL1B, TNFA, IL12A, IL23A, TGFB1, NOS2, and MMP9 were significantly up-regulated in inflamed Caco-2 compared to the basal co-culture. Moreover, IL-17, IL-1ß, IL-6, TNF-α release was increased in supernatants of THP-1. The mEV administration partially restored initial conditions with an effective anti-inflammatory activity. Indeed, a decrease in gene expression and protein production of most of the tested cytokines was detected, together with a significant gene expression decrease in MMP9 and the up-regulation of MUC2 and TJP1. These results showed a fundamental capability of mEVs to modulate inflammation and their potential beneficial effect on the intestinal mucosa.
RESUMO
Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.
Assuntos
Vesículas Extracelulares , Doenças das Cabras , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Doenças das Cabras/metabolismo , Cabras , Inflamação/veterinária , Inflamação/metabolismo , Interleucina-18 , Mucosa Intestinal , Leite/metabolismo , Receptor 7 Toll-Like/metabolismo , Doenças Inflamatórias IntestinaisRESUMO
Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.
RESUMO
Spontaneous mammary tumors are the most frequent neoplasms in bitches and show similarities with human breast cancer in risk factors, clinical course, and histopathology. The poor prognosis of some cancer subtypes, both in human and dog, demands more effective therapeutic approaches. A possible strategy is the new anticancer therapy based on immune response modulation through bacteria or their derivatives on canine mammary carcinoma cell lines. The aim of the present study was to analyze the CF33 cell line in terms of basal expression of immune innate genes, CXCR4 expression, and interaction with infectious stressors. Our results highlight that CF33 maintains gene expression parameters typical of mammary cancer, and provides the basal gene expression of CF33, which is characterized by overexpression of CXCR4, CD44, RAD51, LY96, and a non-continuous expression of TP53 and PTEN. No mutations appeared in the CXCR4 gene until the 58th passage; this may represent important information for studying the CXCR4 pathway as a therapeutic target. Moreover, the CF33 cell line was shown to be able to interact with Salmonella Typhimurium (ST) (an infective stressor), indicating that these cells could be used as an in vitro model for developing innovative therapeutic approaches involving bacteria.
RESUMO
Toll-like receptor 2 (TLR2) ligands are attracting attention as prophylactic and immunopotentiator agents against pathogens, including viruses. We previously reported that a synthetic diacylated lipopeptide (Mag-Pam2Cys_P48) polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. Here, we investigated its role in modulating monocyte-derived macrophage (moMΦ) responses against African swine fever virus (ASFV), the etiological agent of one of the greatest threats to the global pig industry. Two ASFV isolates were compared: the attenuated NH/P68 and the virulent 26544/OG10. No effect on virus infection nor the modulation of surface markers' expression (MHC I, MHC II DR, CD14, CD16, and CD163) were observed when Mag-Pam2Cys_P48 treated moMΦ were infected using a multiplicity of infection (MOI) of 1. Mag-Pam2Cys_P48 treated moMΦ released higher levels of IL-1α, IL-1ß, IL-1Ra, and IL-18 in response to infection with NH/P68 ASFV compared to 26544/OG10-infected and mock-infected controls. Surprisingly, when infected using a MOI of 0.01, the virulent ASFV 26544/OG10 isolate replicated even slightly more efficiently in Mag-Pam2Cys_P48 treated moMΦ. These effects also extended to the treatment of moMΦ with two other lipopeptides: Mag-Pam2Cys_P80 and Mag-Pam2Cys_Mag1000. Our data suggested limited applicability of TLR2 agonists as prophylactic or immunopotentiator agents against virulent ASFV but highlighted the ability of the virulent 26544/OG10 to impair macrophage defenses.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Receptor 2 Toll-Like/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-18/metabolismo , Virulência , Macrófagos , Lipopeptídeos/farmacologia , Adjuvantes ImunológicosRESUMO
African swine fever viruses (ASFV), currently a serious threat to the global pig industry, primarily target porcine macrophages. Macrophages are characterized by their remarkable plasticity, being able to modify their phenotype and functions in response to diverse stimuli. Since IL-10 and TGF-ß polarize macrophages toward an anti-inflammatory phenotype, we analyzed their impact on porcine monocyte-derived macrophages' (moMΦ) susceptibility to infection and their responses to two genotype I ASFV strains, virulent 26544/OG10 and attenuated NH/P68. At a low multiplicity of infection (MOI), NH/P68, but not 26544/OG10, presented a higher ability to infect moM(IL-10) compared to moMΦ and moM(TGF-ß), but no differences were appreciated at a higher MOI. Both strains replicated efficiently in all moMΦ subsets, with no differences at later times post-infection. Both strains downregulated CD14 and CD16 expression on moMΦ, irrespective of the activation status. ASFV's modulation of CD163 and MHC II DR expression and cytokine responses to NH/P68 or 26544/OG10 ASFV were not affected by either IL-10 or TGF-ß pre-treatment. Our results revealed little impact of these anti-inflammatory cytokines on moMΦ interaction with ASFV, which likely reflects the ability of the virus to effectively modulate macrophage responses.
RESUMO
Papillomavirus (PV) infections may be related to anogenital lesions and cancer development in humans and several other animal species. To date, 11 different PVs have been reported in horses. Among them, a newly described PV named Equus caballus Papillomavirus Type9 (EcPV9) was thus far only reported in the semen of a stallion with penile lesions in Australia. This study reports for the first time the presence of EcPV9 in asymptomatic Italian horses. From July 2020 to January 2022, genital brush samples were collected from 209 horses with no apparent signs of neoplastic disease and no PV-associated lesions, clinically examined at the Didactic Veterinary University Hospital (OVUD) of Perugia and at the Veterinary University Hospital (OVU) of Turin. Brushes were submitted to real-time PCR targeting the EcPV9-L1 region. The first amplification targeted a region of ~116 bp, followed by the amplification and sequencing of ~533 bp of the positive samples. EcPV9-L1 DNA was found in eleven horses (5.3%), all female and mainly English Thoroughbred. Co-infection with EcPV2-L1 was found in 7 out of the 11 EcPV9-L1 positive horses (63.6%). This study contributes to the description of the prevalence of exposure or infection of EcPVs in the horse population in Italy, for which data are still limited. In this regard, here we provide a phylogenetic analysis and the completely reconstructed viral genomes of two Italian EcPV type 9 isolates, as well as four EcPV type 2 obtained from co-infected animals.
Assuntos
Doenças dos Cavalos , Infecções por Papillomavirus , Animais , Feminino , Genoma Viral , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/genética , Cavalos , Humanos , Masculino , Papillomaviridae , FilogeniaRESUMO
Cadmium (Cd2+) is regarded as one of the most toxic heavy metals, which can enter the food chain through environmental contamination and be bioaccumulated. Its exposure in Ligurian wild boars was monitored between 2016-2020 and revealed high level of this heavy metal in different provinces. In one of these polluted area, 21 wild boars were additionally sampled and the relationship between hepatic and renal Cd2+ concentration suggested that majority of these animals presented chronic intoxication. Cd2+ exposure of wild boar might lead to an immunosuppression status, thus in vitro experiments on wild boar monocyte-derived macrophages (moMФ) were carried out. Effects of Cd2+ scalar doses were evaluated through viability and adsorption assays, ELISA, qPCR. Moderate doses of this environmental pollutant (20 µM) were absorbed by moMФ, with subsequent reduction of their viability. This heavy metal did not trigger release of either IFN- ß, anti-inflammatory or pro-inflammatory cytokines by moMФ, instead 24 h treatment with 20 µM of Cd2+ resulted in down-regulated expression of TNF-α, IL-12p40, several TLRs, CD14, MD2, BD2, MyD88, p65, and NOS2. The results of our monitoring activity suggested that wild boar can be useful to monitor environmental exposure of this heavy metal and can help in understanding the type of contamination. In addition, in vitro experiments on wild boar moMФ revealed that Cd2+ exposure negatively affected the immune function of these cells, likely leading to increased susceptibility to infection.
RESUMO
Toll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of Mycoplasma agalactiae (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ. We observed enhanced expression of activation markers (MHC class I, MHC class II DR, CD25), increased phagocytotic activity, and release of IL-12 and proinflammatory cytokines. Mag-Pam2Cys also upregulated the gene expression of several IFN-α subtypes, p65, NOS2, and molecules with antimicrobial activities (CD14, beta defensin 1). Overall, our data showed that Mag-Pam2Cys polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. However, Mag-Pam2Cys downregulated the expression of IFN-α3, six TLRs (TLR3, -4, -5, -7, -8, -9), and did not interfere with macrophage polarization induced by the immunosuppressive IL-10, suggesting that the inflammatory activity evoked by Mag-Pam2Cys could be regulated to avoid potentially harmful consequences. We hope that our in vitro results will lay the foundation for the further evaluation of this diacylated lipopeptide as an immunopotentiator in vivo.