Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Appl Microbiol ; 132(6): 4310-4320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332971

RESUMO

AIMS: This study aimed to evaluate the combined effect of a mannose-binding lectin Helja with fluconazole (FLC) on Candida albicans and to get insights about the joint action mechanism. METHODS AND RESULTS: The fungal growth was assessed following the optical density at 630 nm. Fungal cell morphology and nucleus integrity were analysed by flow cytometry and confocal laser scanning microscopy using Calcofluor White (CFW) and 4',6-diamidino-2-phenylindole (DAPI) staining respectively. The basis of Helja + FLC action on cell wall and plasma membrane was analysed using perturbing agents. The Helja + FLC combination exhibited an inhibitory effect of fungal growth about three times greater than the sum of both compounds separately and inhibited fungal morphological plasticity, an important virulence attribute associated with drug resistance. Cells treated with Helja + FLC showed morphological changes, nucleus disintegration and formation of multimera structures, leading to cell collapse. CONCLUSIONS: Our findings indicate that the Helja + FLC combination exhibited a potent antifungal activity based on their simultaneous action on different microbial cell targets. SIGNIFICANCE AND IMPACT OF STUDY: The combination of a natural protein with conventional drugs might be helpful for the design of effective therapeutic strategies against Candida, contributing to minimize the development of drug resistance and host cell toxicity.


Assuntos
Candida albicans , Fluconazol , Antifúngicos/farmacologia , Candida , Farmacorresistência Fúngica , Sinergismo Farmacológico , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana
2.
J Exp Bot ; 68(20): 5485-5495, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29145622

RESUMO

Extracellular vesicles (EV) are membrane particles released by cells into their environment and are considered to be key players in intercellular communication. EV are produced by all domains of life but limited knowledge about EV in plants is available, although their implication in plant defense has been suggested. We have characterized sunflower EV and tested whether they could interact with fungal cells. EV were isolated from extracellular fluids of seedlings and characterized by transmission electron microscopy and proteomic analysis. These nanovesicles appeared to be enriched in cell wall remodeling enzymes and defense proteins. Membrane-labeled EV were prepared and their uptake by the phytopathogenic fungus Sclerotinia sclerotiorum was verified. Functional tests further evaluated the ability of EV to affect fungal growth. Spores treated with plant EV showed growth inhibition, morphological changes, and cell death. Conclusive evidence on the existence of plant EV is presented and we demonstrate their ability to interact with and kill fungal cells. Our results introduce the concept of cell-to-cell communication through EV in plants.


Assuntos
Ascomicetos/fisiologia , Comunicação Celular , Vesículas Extracelulares/fisiologia , Helianthus/fisiologia , Helianthus/microbiologia , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Proteômica , Plântula/microbiologia , Plântula/fisiologia
3.
Biopolymers ; 108(3)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073158

RESUMO

Many Fusarium species are able to cause severe infections in plants as well as in animals and humans. Therefore, the discovery of new antifungal agents is of paramount importance. CaThi belongs to the thionins, which are cationic peptides with low molecular weights (∼5 kDa) that have toxic effects against various microorganisms. Herein, we study the mechanism of action of CaThi and its combinatory effect with fluconazole (FLC) against Fusarium solani. The mechanism of action of CaThi was studied by growth inhibition, viability, plasma membrane permeabilization, ROS induction, caspase activation, localization, and DNA binding capability, as assessed with Sytox green, DAB, FITC-VAD-FMK, CaThi-FITC, and gel shift assays. The combinatory effect of CaThi and FLC was assessed using a growth inhibition assay. Our results demonstrated that CaThi present a dose dependent activity and at the higher used concentration (50 µg mL-1 ) inhibits 83% of F. solani growth, prevents the formation of hyphae, permeabilizes membranes, induces endogenous H2 O2 , activates caspases, and localizes intracellularly. CaThi combined with FLC, at concentrations that alone do not inhibit F. solani, result in 100% death of F. solani when combined. The data presented in this study demonstrate that CaThi causes death of F. solani via apoptosis; an intracellular target may also be involved. Combined treatment using CaThi and FLC is a strong candidate for studies aimed at improved targeting of F. solani. This strategy is of particular interest because it minimizes selection of resistant microorganisms.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fluconazol/farmacologia , Tioninas/farmacologia , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Capsicum/química , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Frutas/química , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Humanos , Hifas/efeitos dos fármacos , Hifas/patogenicidade , Tioninas/química
4.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3429-3443, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27614033

RESUMO

BACKGROUND: Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef1-Saccharomyces cerevisiae interaction. METHODS: ApDef1-S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. RESULTS: ApDef1 caused S. cerevisiae cell death and MIC was 7.8µM. Whole cell population died after 18h of ApDef1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef1 induced death. ApDef1-S. cerevisiae interaction resulted in membrane permeabilization, H2O2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. CONCLUSIONS: ApDef1-S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. GENERAL SIGNIFICANCE: We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef1-S. cerevisiae interaction.


Assuntos
Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Defensinas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/citologia , Antifúngicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
5.
Pestic Biochem Physiol ; 140: 30-35, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755691

RESUMO

Plants synthesize diverse types of secondary metabolites and some of them participate in plant protection against pathogen attack. These compounds are biodegradable and renewable alternatives, which may be envisaged for the control of plant pests and diseases. Chlorogenic acid (CGA) is a phenolic secondary metabolite which accumulates in diverse plant tissues and can be found in several agro-industrial by-products and waste. The aim of this work was to determine whether CGA could control the growth of various plant pathogenic fungi, gaining insight into its mechanism of action. Microscopic analysis showed the complete inhibition of spore germination or reduction of mycelial growth for Sclerotinia sclerotiorum, Fusarium solani, Verticillium dahliae, Botrytis cinerea and Cercospora sojina. CGA concentrations that did not completely abolish spore germination were able to produce a partial inhibition of mycelial growth. Viability tests and vital dye staining demonstrate that CGA induces fungal cell lysis. Its fungicidal activity involves an early membrane permeabilization of the spores. These results show the antifungal activity of CGA against phytopathogenic fungi relevant in horticulture and agriculture highlighting the potential of CGA-enriched wastes and by-products to be used as biofungicides.


Assuntos
Ácido Clorogênico/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Micélio/efeitos dos fármacos
6.
Int J Mol Sci ; 18(1)2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28075401

RESUMO

According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells. Helja coding sequence was fused to the pET-32 EK/LIC, the enterokinase/Ligation-independent cloning vector and a 35 kDa protein was obtained in Escherichia coli representing Helja coupled to thioredoxin (Trx). The identity of this protein was verified using anti-Helja antibodies. This chimera, named Trx-rHelja, was enriched in the soluble bacterial extracts and was purified using Ni+2-Sepharose and d-mannose-agarose chromatography. Trx-rHelja and the enterokinase-released recombinant Helja (rHelja) both displayed toxicity on human SH-SY5Y neuroblastomas. rHelja decreased the viability of these tumor cells by 75% according to the tetrazolium reduction assay, and microscopic analyses revealed that the cell morphology was disturbed. Thus, the stellate cells of the monolayer became spheroids and were isolated. Our results indicate that rHelja is a promising tool for the development of diagnostic or therapeutic methods for neuroblastoma cells, the most common solid tumors in childhood.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Helianthus/química , Lectinas de Plantas/farmacologia , Proteínas Recombinantes , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Lectinas de Plantas/isolamento & purificação
7.
Nitric Oxide ; 39: 20-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24747108

RESUMO

Nitric oxide (NO) is a signal molecule involved in several physiological processes in plants, including root development. Despite the importance of NO as a root growth regulator, the knowledge about the genes and metabolic pathways modulated by NO in this process is still limited. A constraint to unravel these pathways has been the use of exogenous applications of NO donors that may produce toxic effects. We have analyzed the role of NO in root architecture through the depletion of endogenous NO using the scavenger cPTIO. Sunflower seedlings growing in liquid medium supplemented with cPTIO showed unaltered primary root length while the number of lateral roots was deeply reduced; indicating that endogenous NO participates in determining root branching in sunflower. The transcriptional changes induced by NO depletion have been analyzed using a large-scale approach. A microarray analysis showed 330 genes regulated in the roots (p≤0.001) upon endogenous NO depletion. A general cPTIO-induced up-regulation of genes involved in the lignin biosynthetic pathway was observed. Even if no detectable changes in total lignin content could be detected, cell walls analyses revealed that the ratio G/S lignin increased in roots treated with cPTIO. This means that endogenous NO may control lignin composition in planta. Our results suggest that a fine tuning regulation of NO levels could be used by plants to regulate root architecture and lignin composition. The functional implications of these findings are discussed.


Assuntos
Helianthus/efeitos dos fármacos , Óxido Nítrico/farmacologia , Sequestradores de Radicais Livres/farmacologia , Perfilação da Expressão Gênica , Helianthus/química , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Lignina/análise , Lignina/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
8.
Curr Microbiol ; 69(1): 88-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24623187

RESUMO

Lectins are carbohydrate-binding proteins with a high specificity for a variety of glycoconjugate sugar motifs. The jacalin-related lectins (JRL) are considered to be a small sub-family composed of galactose- and mannose-specific members. Using a proteomics approach, we have detected a 16 kDa protein (Helja) in sunflower seedlings that were further purified by mannose-agarose affinity chromatography. The aim of this work was to characterize the biological activity of Helja and to explore potential applications for the antifungal activity of this plant lectin against medically important yeasts. To initially assess the agglutination properties of the lectin, Saccharomyces cerevisiae cells were incubated with increasing concentrations of the purified lectin. At a concentration of 120 µg/ml, Helja clearly agglutinated these cells. The ability of different sugars to inhibit S. cerevisiae cell agglutination determined its carbohydrate-specificity. Among the monosaccharides tested, D-mannose had the greatest inhibitory effect, with a minimal concentration of 1.5 mM required to prevent cell agglutination. The antifungal activity was evaluated using pathogenic fungi belonging to the Candida and Pichia genera. We demonstrate that 200 µg/ml of Helja inhibited the growth of all yeasts, and it induced morphological changes, particularly through pseudohyphae formation on Candida tropicalis. Helja alters the membrane permeability of the tested fungi and is also able to induce the production of reactive oxygen species in C. tropicalis cells. We concluded that Helja is a mannose-binding JRL with cell agglutination capabilities and antifungal activity against yeasts. The biological properties of Helja may have practical applications in the control of human pathogens.


Assuntos
Antifúngicos/farmacologia , Helianthus/química , Lectinas/farmacologia , Micoses/tratamento farmacológico , Aglutinação , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Galactose/metabolismo , Humanos , Manose/metabolismo , Óxido Nítrico/metabolismo , Pichia/efeitos dos fármacos , Pichia/crescimento & desenvolvimento , Lectinas de Plantas/farmacologia , Proteínas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/química , Sementes/química
10.
J Exp Bot ; 63(18): 6555-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23162115

RESUMO

Plant lipid transfer proteins (LTPs) constitute a family of small proteins recognized as being extracellular. In agreement with this notion, several lines of evidence have shown the apoplastic localization of HaAP10, a LTP from Helianthus annuus dry seeds. However, HaAP10 was recently detected intracellularly in imbibing seeds. To clarify its distribution, immunolocalization experiments were performed during the course of germination and confirmed its intracellular localization upon early seed imbibition. Further assays using a hydrophobic dye, FM4-64, inhibitors of vesicular traffic, and immunolocalization of the pectin rhamnogalacturonan-II, allowed the conclusion that endocytosis is activated as soon as seed imbibition starts. Furthermore, this study demonstrated that HaAP10 is endocytosed throughout imbibition. Biochemical and cellular approaches indicate that the intracellular fraction of this LTP appears associated with oil bodies and some evidence also suggest its presence in glyoxysomes. So, HaAP10 is apoplastic in dry seeds and upon imbibition is rapidly internalized and relocalized to organelles involved in lipid metabolism. The results suggest that HaAP10 may be acting as a fatty acid shuttle between the oil body and the glyoxysome during seed germination. This concept is consistent with the initial proposition that LTPs participate in the intracellular transfer of lipids which was further denied based on their apparent extracellular localization. This report reveals for the first time the relocalization of a lipid transfer protein and opens new perspectives on its role.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Germinação , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluorimunoensaio , Glioxissomos/metabolismo , Helianthus/citologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Pectinas/metabolismo , Estruturas Vegetais/metabolismo , Transporte Proteico , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sementes/crescimento & desenvolvimento
11.
Curr Protein Pept Sci ; 21(3): 284-294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31490746

RESUMO

Lectins are proteins characterized by their ability to specifically bind different carbohydrate motifs. This feature is associated with their endogenous biological function as well as with multiple applications. Plants are important natural sources of these proteins; however, only a reduced group was shown to display antifungal activity. Although it is hypothesized that the target of lectins is the fungal cell wall, the mechanism through which they exert the antifungal action is poorly understood. This topic is relevant to improve treatment against pathogens of importance for human health. In this context, mechanisms pointing to essential attributes for virulence instead of the viability of the pathogen emerge as a promising approach. This review provides the current knowledge on the action mechanism of plant antifungal lectins and their putative use for the development of novel active principles against fungal infections.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Lectinas de Plantas/farmacologia , Fungos/patogenicidade , Humanos , Virulência/efeitos dos fármacos
12.
Phytomedicine ; 58: 152875, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884454

RESUMO

BACKGROUND: In our previous study, we isolated and characterized a lectin called Helja from Helianthus annuus (sunflower) and then, in a further study, demonstrated its antifungal activity against Candida spp. Since Candida infections are a major health concern due to the increasing emergence of antifungal resistant strains, the search for new antifungal agents offers a promising opportunity for improving the treatment strategies against candidiasis. PURPOSE: The aim of this work was to get insights about the mechanism of action of Helja, an antifungal lectin of H. annuus, and to explore its ability to inhibit Candida albicans biofilm development and adherence to buccal epithelial cells (BEC). STUDY DESIGN/METHODS: Yeast viability was evaluated by Evans Blue uptake and counting of colony forming units (CFU). The yeast cell integrity was assessed using Calcofluor White (CFW) as a cell wall perturbing agent and sorbitol as osmotic protectant. The induction of oxidative stress was evaluated using 3,3'-diaminobenzidine (DAB) for detection of hydrogen peroxide. The adherence was determined by counting the yeast cells attached to BEC after methylene blue staining. The biofilms were developed on polystyrene microplates, visualized by confocal laser scanning microscopy and the viable biomass was quantified by CFU counting. The binding lectin-Candida was assessed using Helja conjugated to fluorescein isothiocyanate (Helja-FITC) and simultaneous staining with CFW. The cellular surface hydrophobicity (CSH) was determined using a microbial adhesion to hydrocarbons method. RESULTS: C. albicans cells treated with 0.1 µg/µl of Helja showed a drastic decrease in yeast survival. The lectin affected the fungal cell integrity, induced the production of hydrogen peroxide and inhibited the morphological transition from yeast to filamentous forms. Helja caused a significant reduction of adherent cells and a decrease in biofilm biomass and coverage area. The treatment with the protein also reduced the surface hydrophobicity of fungal cells. We show the binding of Helja-FITC to yeast cells distributed as a thin outer layer to the CFW signal, and this interaction was displaced by mannose and Concanavalin A. CONCLUSION: The results demonstrate the interaction of Helja with the mannoproteins of C. albicans cell wall, the disruption of the cell integrity, the induction of oxidative stress, the inhibition of the morphological transition from yeast to filamentous forms and the fungal cell viability loss. The binding Helja-Candida also provides a possible explanation of the lectin effect on cell adherence, biofilm development and CSH, relevant features related to virulence of the pathogen.


Assuntos
Antifúngicos/metabolismo , Candida albicans/efeitos dos fármacos , Helianthus/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Candida albicans/fisiologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Células Cultivadas , Células Epiteliais/microbiologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas
13.
Plant Cell Environ ; 31(8): 1051-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18419735

RESUMO

Various phosphoinositides have been implicated in plant defence signalling. Until now, such molecules have been exclusively related to intracellular signalling. Here, evidence is provided for the detection of extracellular phosphatidylinositol 4-phosphate (PI4P) in tomato cell suspensions. We have analysed and compared the intracellular and extracellular phospholipid profiles of [(32)P(i)]-prelabelled tomato cells, challenged with the fungal elicitor xylanase. These phospholipid patterns were found to be different, being phosphatidylinositol phosphate (PIP) the most abundant phospholipid in the extracellular medium. Moreover, while cells responded with a typical increase in phosphatidic acid and a decrease in intracellular PIP upon xylanase treatment, extracellular PIP level increased in a time- and dose-dependent manner. Using two experimental approaches, the extracellular PIP isoform was identified as PI4P. Addition of PI4P to tomato cell suspensions triggered the same defence responses as those induced by xylanase treatment. These include production of reactive oxygen species, accumulation of defence-related gene transcripts and induction of cell death. We demonstrate that extracellular PI4P is accumulated in xylanase-elicited cells and that exogenous application of PI4P mimics xylanase effects, suggesting its putative role as an intercellular signalling molecule.


Assuntos
Endo-1,4-beta-Xilanases/farmacologia , Espaço Extracelular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Fosfatos de Fosfatidilinositol/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Explosão Respiratória/efeitos dos fármacos
14.
J Exp Bot ; 59(3): 553-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18212025

RESUMO

Phospholipids are well known messengers involved in developmental and stress responses mediating intracellular signalling. It has been hypothesized that phospholipids exist which could participate in intercellular communication events through the apoplast of sunflower (Helianthus annuus) seeds. Here it is shown that extracellular washing fluids (EWFs) obtained from seeds imbibed for 2 h contain diverse phospholipids. Lipid profiling by electrospray ionization tandem mass spectrometry revealed that the EWFs have a particular composition, with phosphatidic acid (PA) and phosphatidylinositol (PI) being the major phospholipids. These profiles are clearly distinct from those of seed extract (SE), and comparative SDS-PAGE of EWF and SE, followed by intracellular and plasma membrane marker analyses, allowed a significant contamination of the EWF to be discarded. Treatment of the seeds with 100 microM jasmonic acid (JA) induces changes in the profile of EWF phospholipids, leading to a decrease in PI content, while the accumulation of phosphatidylinositol 4-phosphate (PI4P) and specific PA species is observed. On the other hand, the EWF from seeds subjected to 50 microM abscisic acid (ABA) treatment exhibit an increase in PA and phosphatidylglycerol levels. To our knowledge, this is the first report on the existence of phospholipids as extracellular components of seeds. Moreover, the modulation of PA, PI, and PI4P levels by hormonal treatments further suggests their contribution to intercellular communication in planta.


Assuntos
Líquido Extracelular/metabolismo , Helianthus/metabolismo , Fosfolipídeos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Água/metabolismo
15.
J Plant Physiol ; 221: 22-31, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223879

RESUMO

Lectins are carbohydrate-affinity proteins with the ability to recognize and reversibly bind specific glycoconjugates. We have previously isolated a bioactive sunflower mannose-binding lectin belonging to the jacalin-related family called Helja. Despite of the significant number of plant lectins described in the literature, only a small group exhibits antifungal activity and the mechanism by which they kill fungi is still not understood. The aim of this work was to explore Helja activity on plant pathogenic fungi, and provide insights into its mechanism of action. Through cellular and biochemical experimental approaches, here we show that Helja exerts an antifungal effect on Sclerotinia sclerotiorum, a sunflower pathogen. The lectin interacts with the fungal spore surface, permeabilizes its plasma membrane, can be internalized into the cell and induces oxidative stress, finally leading to the cell death. On the other hand, Helja is inactive towards Fusarium solani, a non-pathogen of sunflower, showing the selective action of the lectin. The mechanistic basis for the antifungal activity of an extracellular jacalin lectin is presented, suggesting its initial interaction with fungal cell wall carbohydrates and further internalization. The implication of our findings for plant defense is discussed.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Helianthus/metabolismo , Lectinas de Ligação a Manose/farmacologia , Lectinas de Plantas/farmacologia , Helianthus/microbiologia
16.
J Extracell Vesicles ; 6(1): 1407213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30044885

RESUMO

In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host-pathogen interaction, including invasion, immunomodulation, and pathology as well as parasite-parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São Paulo (November, 2016), Brazil, entitled Cross-organism Communication by Extracellular Vesicles: Hosts, Microbes and Parasites.

17.
FEBS J ; 273(1): 72-83, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367749

RESUMO

Viscotoxins are cationic proteins, isolated from different mistletoe species, that belong to the group of thionins, a group of basic cysteine-rich peptides of approximately 5 kDa. They have been shown to be cytotoxic to different types of cell, including animal, bacterial and fungal. The aim of this study was to obtain information on the cell targets and the mechanism of action of viscotoxin isoform A3 (VtA3). We describe a detailed study of viscotoxin interaction with fungal-derived model membranes, its location inside spores of Fusarium solani, as well as their induced spore death. We show that VtA3 induces the appearance of ion-channel-like activity, the generation of H2O2, and an increase in cytoplasmic free Ca2+. Moreover, we show that Ca2+ is involved in VtA3-induced spore death and increased H2O2 concentration. The data presented here strongly support the notion that the antifungal activity of VtA3 is due to membrane binding and channel formation, leading to destabilization and disruption of the plasma membrane, thereby supporting a direct role for viscotoxins in the plant defence mechanism.


Assuntos
Fungos/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Ácido Egtázico/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Bicamadas Lipídicas/química , Microscopia Confocal , Erva-de-Passarinho/metabolismo , Erva-de-Passarinho/fisiologia , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Preparações de Plantas/metabolismo , Preparações de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Ligação Proteica/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo
19.
J Plant Physiol ; 162(6): 618-24, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16008084

RESUMO

Nonspecific lipid transfer proteins (nsLTPs) belong to a large family of plant proteins whose function in vivo remains unknown. In this research, we studied a LTP previously isolated from sunflower seeds (Ha-AP10), which displays strong antimicrobial activity against a model fungus. The protein is present during at least the first 5 days of germination, and tissue printing experiments revealed the homogeneous distribution of the protein in the cotyledons. Here we report that Ha-AP10 exerts a weak inhibitory effect on the growth of Alternaria alternata, a fungus that naturally attacks sunflower seeds. These data put into question the contribution of Ha-AP10 as an antimicrobial protein of direct effect on pathogenic fungus, and rather suggest a function related to the mobilization of lipid reserves. We also show that the levels of Ha-AP10 in germinating seeds increase upon salt stress, fungal infection and ABA treatment, indicating that it somehow participates in the adaptative responses of germinating sunflower seeds.


Assuntos
Antifúngicos/farmacologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Helianthus/fisiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/fisiologia , Ácido Abscísico/farmacologia , Alternaria/efeitos dos fármacos , Antifúngicos/metabolismo , Proteínas de Transporte/farmacologia , Germinação , Doenças das Plantas/microbiologia , Proteínas de Plantas/farmacologia , Cloreto de Sódio/farmacologia
20.
Plant Signal Behav ; 10(12): e1105417, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479260

RESUMO

Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Germinação , Mutação/genética , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA