RESUMO
This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) mediated by Photodithazine® (PDZ) and LED light on the virulence factors of fluconazole-susceptible (CaS) and fluconazole-resistant (CaR) Candida albicans. Standardized suspensions of strains were prepared (107), and after 48 h of biofilm formation, these strains were incubated with PDZ (100 mg/L) for 20 min and exposed to LED light (660 nm, 37.5 J/cm2). Additional samples were treated with PDZ or light only, and the control consisted of biofilms that received no treatment. After aPDT, the cells were recovered and the virulence factors were evaluated. To analyze the capacity of adhesion, cells were recovered after aPDT and submitted to the adhesion process in the bottom of a 96-well plate. After this, metabolic activity tests (XTT assay) and cell viability (colony forming units per milliliter, CFU/mL) were applied. To evaluate the biofilm-forming ability after aPDT, the cells recovered were submitted to biofilm formation procedures, and the biofilm formed was evaluated by XTT, CFU/mL, and total biomass (crystal violet) tests. Lastly, the capacity for synthesizing protease and phospholipase enzymes after aPDT was evaluated by fluorimetric tests. Data were analyzed by two- or three-way ANOVA tests (p ≤ 0.05). It was verified that aPDT reduced the viability of both strains, fluconazole-susceptible and fluconazole-resistant C. albicans. It was also observed that the CaR strain had lower susceptibility to the aPDT when compared with the CaS strain. However, regarding the virulence factors evaluated, it was demonstrated that aPDT did not alter the adherence and biofilm formation ability and enzymatic production.
Assuntos
Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Fotoquimioterapia/métodos , Fatores de Virulência/metabolismo , Adesividade , Biofilmes/efeitos dos fármacos , Biomassa , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases/metabolismo , Fosfolipases/metabolismoRESUMO
This study evaluated the potential of curcumin-mediated antimicrobial photodynamic inactivation (API) on multispecies biofilms of Candida albicans, Candida glabrata, and Streptococcus mutans of different ages. Acrylic samples (n = 480) were made with standardized rough surfaces and incubated with bacteria and yeast for 24 or 48 h. API was performed with curcumin (80, 100, 120 µM) and LED light. Additional acrylic samples were treated with curcumin or LED light only. Positive control samples received neither light nor curcumin. After API, colony counts were quantified (CFU/mL), cell metabolism was determined by means of XTT assay, and the total biofilm biomass was evaluated using Crystal Violet (CV) staining assay and images were obtained by confocal laser scanning microscopy (CLSM). The data were analyzed by nonparametric two-way ANOVA and post hoc Tukey tests (α < 0.05). For 24-h biofilm, API resulted in statistically significant difference (ρ < 0.001) of viability of C. albicans compared with control (P-L-) for all Cur concentrations. For 48-h biofilm, API resulted in statistically significant difference (ρ < 0.001) compared with control only when Cur at 120 µM was used. API promoted statistically significant difference (ρ ≤ 0.001) in the viability of S. mutans and C. glabrata for all Cur concentrations in the two biofilm ages. In addition, API produced a statistically significant difference (ρ < 0.001) of metabolic activity and of total biomass (ρ < 0.001) of multispecies biofilms compared with control for all Cur concentrations. It can be concluded that both 24- and 48-h biofilms were susceptible to API mediated by Cur; however, 24-h biofilm was more sensitive than the 48-h biofilm.