RESUMO
Species are altering their phenology to track warming temperatures. In forests, understorey plants experience tree canopy shading resulting in light and temperature conditions, which strongly deviate from open habitats. Yet, little is known about understorey phenology responses to forest microclimates. We recorded flowering onset, peak, end and duration of 10 temperate forest understorey plant species in two mesocosm experiments to understand how phenology is affected by sub-canopy warming and how this response is modulated by illumination, which is related to canopy change. Furthermore, we investigated whether phenological sensitivities can be explained by species' characteristics, such as thermal niche. We found a mean advance of flowering onset of 7.1 d per 1°C warming, more than previously reported in studies not accounting for microclimatic buffering. Warm-adapted species exhibited greater advances. Temperature sensitivity did not differ between early- and later-flowering species. Experimental illumination did not significantly affect species' phenological temperature sensitivities, but slightly delayed flowering phenology independent from warming. Our study suggests that integrating sub-canopy temperature and light availability will help us better understand future understorey phenology responses. Climate warming together with intensifying canopy disturbances will continue to drive phenological shifts and potentially disrupt understorey communities, thereby affecting forest biodiversity and functioning.
Assuntos
Florestas , Iluminação , Estações do Ano , Ecossistema , Temperatura , Plantas , Mudança ClimáticaRESUMO
Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche ) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N-61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche ) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.
Assuntos
Mudança Climática , Florestas , Ecossistema , Europa (Continente) , Flores , Temperatura , PlantasRESUMO
Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.
Assuntos
Florestas , Microclima , Mudança Climática , Plantas , Temperatura , ÁrvoresRESUMO
Aim: The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location: Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period: 2018-2021. Major taxa studied: Vascular plants. Methods: Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results: Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions: Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests.
RESUMO
Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Assuntos
Mudança Climática , Microclima , Biodiversidade , Ecossistema , Florestas , ÁrvoresRESUMO
Forest biodiversity and ecosystem services are hitherto predominantly quantified in forest interiors, well away from edges. However, these edges also represent a substantial proportion of the global forest cover. Here we quantified plant biodiversity and ecosystem service indicators in 225 plots along forest edge-to-interior transects across Europe. We found strong trade-offs: phylogenetic diversity (evolutionary measure of biodiversity), proportion of forest specialists, decomposition and heatwave buffering increased towards the interior, whereas species richness, nectar production potential, stemwood biomass and tree regeneration decreased. These trade-offs were mainly driven by edge-to-interior structural differences. As fragmentation continues, recognizing the role of forest edges is crucial for integrating biodiversity and ecosystem service considerations into sustainable forest management and policy.
Assuntos
Biodiversidade , Florestas , Europa (Continente) , Conservação dos Recursos Naturais , Árvores , FilogeniaRESUMO
Climate change is commonly assumed to induce species' range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
Assuntos
Poluição do Ar , Biodiversidade , Mudança Climática , Florestas , Nitrogênio , Dispersão Vegetal , Europa (Continente) , Nitrogênio/metabolismo , Árvores/metabolismoRESUMO
Urbanization impacts plant-herbivore interactions, which are crucial for ecosystem functions such as carbon sequestration and nutrient cycling. While some studies have reported reductions in insect herbivory in urban areas (relative to rural or natural forests), this trend is not consistent and the underlying causes for such variation remain unclear. We conducted a continental-scale study on insect herbivory along urbanization gradients for three European tree species: Quercus robur, Tilia cordata, and Fraxinus excelsior, and further investigated their biotic and abiotic correlates to get at mechanisms. To this end, we quantified insect leaf herbivory and foliar secondary metabolites (phenolics, terpenoids, alkaloids) for 176 trees across eight European cities. Additionally, we collected data on microclimate (air temperature) and soil characteristics (pH, carbon, nutrients) to test for abiotic correlates of urbanization effects directly or indirectly (through changes in plant secondary chemistry) linked to herbivory. Our results showed that urbanization was negatively associated with herbivory for Q. robur and F. excelsior, but not for T. cordata. In addition, urbanization was positively associated with secondary metabolite concentrations, but only for Q. robur. Urbanization was positively associated with air temperature for Q. robur and F. excelsior, and negatively with soil nutrients (magnesium) in the case of F. excelsior, but these abiotic variables were not associated with herbivory. Contrary to expectations, we found no evidence for indirect effects of abiotic factors via plant defences on herbivory for either Q. robur or F. excelsior. Additional biotic or abiotic drivers must therefore be accounted for to explain observed urbanization gradients in herbivory and their interspecific variation.
Assuntos
Herbivoria , Insetos , Folhas de Planta , Urbanização , Animais , Herbivoria/fisiologia , Folhas de Planta/metabolismo , Insetos/fisiologia , Fraxinus/metabolismo , Quercus/metabolismo , Quercus/fisiologia , Solo/química , Tilia/metabolismo , Terpenos/metabolismo , Metabolismo Secundário , Temperatura , Alcaloides/metabolismo , Fenóis/metabolismoRESUMO
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Assuntos
Mudança Climática , Florestas , Ecossistema , Microclima , TemperaturaRESUMO
Despite the crucial role of the seed bank in forest conservation and dynamics, the effects of forest edge microclimate and climate warming on germination responses from the forest seed bank are still almost unknown. Here, we investigated edge effects on the realised seed bank and seedling community in two types of European temperate deciduous forest, one in the Oceanic and one in the Mediterranean climatic region. Responses in terms of seedling density, diversity, species composition and functional type of the seed bank at the forest edge and interior were examined along latitudinal, elevational and stand structural gradients by means of soil translocation experiments. Moreover, we translocated soil samples from high to low elevation forests in the two regions, thus performing a warming simulation. Density, species diversity and mortality of the seedlings varied with region and elevation. Seedling density also differed between forest edge and interior position, while seedling cover mainly depended on forest structure. Both the edge and interior forest seed bank contained a high proportion of generalist species. In Belgium, a more homogeneous seed bank was found at the forest edge and interior, while in Italy compositional and ecological differences were larger: at the forest edge, more light and less moisture demanding seedling communities developed, with a higher proportion of generalists compared to the interior. In both regions, the upland-to-lowland translocation experiment revealed effects of warming on forest seed banks with thermophilization of the realised communities. Moreover, edge conditions shifted the seedling composition towards more light-demanding communities. The establishment of more light and warm-adapted species from the seed bank could in the long term alter the aboveground vegetation composition, with communities becoming progressively richer in light-demanding generalists and poorer in forest specialists.
Assuntos
Banco de Sementes , Solo , Florestas , Microclima , Plântula , Sementes , ÁrvoresRESUMO
Objetivo: O objetivo deste trabalho é verificar se a transferência embrionária dupla (consecutiva) pode proporcionar taxas de gravidez mais altas em técnicas de reprodução assistida. Material e métodos: Um total de 30 pacientes que tiveram 4 ou mais embriões para transferência no dia 3 após a coleta oocitária, foram submetidas a transferência embrionária dupla (consecutiva). Foram trasnferidos 3 embriões no dia 3 e um blastocisto no dia 5. Foram avaliadas as taxas de gravidez e implantação, determinadas pela visibilizaçào ecográfica de batimentos cardíacos fetais. Resultados: Dentre as 30 transferências embrionárias, houve 14 gestações (46,7%), sendo 4 (28,5%) únicas, 8 gemelares (57,1%) e 2 trigemelares (14,2%). Conclusões: Nossos resultados preliminares sugerem que a transferência consecutiva não apenas não afeta negativamente o processo de implantação embrionária, mas também relaciona-se com altas taxas de gravidez