Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702959

RESUMO

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Assuntos
Cupriavidus necator , Hidrogenase , Domínio Catalítico , Hidrogenase/química , Hidrogenase/metabolismo , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Oxirredução , Níquel
2.
J Am Chem Soc ; 146(8): 5045-5050, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358932

RESUMO

Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.

3.
J Am Chem Soc ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322628

RESUMO

An adaptive catalytic system for selective hydrogenation was developed exploiting the H2 + CO2 â‡” HCOOH equilibrium for reversible, rapid, and robust on/off switch of the ketone hydrogenation activity of ruthenium nanoparticles (Ru NPs). The catalyst design was based on mechanistic studies and DFT calculations demonstrating that adsorption of formic acid to Ru NPs on silica results in surface formate species that prevent C═O hydrogenation. Ru NPs were immobilized on readily accessible silica supports modified with guanidinium-based ionic liquid phases (Ru@SILPGB) to generate in situ sufficient amounts of HCOOH when CO2 was introduced into the H2 feed gas for switching off ketone hydrogenation while maintaining the activity for hydrogenation of olefinic and aromatic C═C bonds. Upon shutting down the CO2 supply, the C═O hydrogenation activity was restored in real time due to the rapid decarboxylation of the surface formate species without the need for any changes in the reaction conditions. Thus, the newly developed Ru@SILPGB catalysts allow controlled and alternating production of either saturated alcohols or ketones from unsaturated substrates depending on the use of H2 or H2/CO2 as feed gas. The major prerequisite for design of adaptive catalytic systems based on CO2 as trigger is the ability to shift the H2 + CO2 â‡” HCOOH equilibrium sufficiently to exploit competing adsorption of surface formate and targeted functional groups. Thus, the concept can be expected to be more generally applicable beyond ruthenium as the active metal, paving the way for next-generation adaptive catalytic systems in hydrogenation reactions more broadly.

4.
J Am Chem Soc ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378366

RESUMO

Single-atom catalysts dispersed on an oxide support are essential for overcoming the sluggishness of the oxygen evolution reaction (OER). However, the durability of most metal single-atoms is compromised under harsh OER conditions due to their low coordination (weak metal-support interactions) and excessive disruption of metal-Olattice bonds to enable lattice oxygen participation, leading to metal dissolution and hindering their practical applicability. Herein, we systematically regulate the local coordination of Irsingle-atoms at the atomic level to enhance the performance of the OER by precisely modulating their steric localization on the NiO surface. Compared to conventional Irsingle-atoms adsorbed on NiO surface, the atomic Ir atoms partially embedded within the NiO surface (Iremb-NiO) exhibit a 2-fold increase in Ir-Ni second-shell interaction revealed by X-ray absorption spectroscopy (XAS), suggesting stronger metal-support interactions. Remarkably, Iremb-NiO with tailored coordination sphere exhibits excellent alkaline OER mass activity and long-term durability (degradation rate: ∼1 mV/h), outperforming commercial IrO2 (∼26 mV/h) and conventional Irsingle-atoms on NiO (∼7 mV/h). Comprehensive operando X-ray absorption and Raman spectroscopies, along with pH-dependence activity tests, identified high-valence atomic Ir sites embedded on the NiOOH surface during the OER followed the lattice oxygen mechanism, thereby circumventing the traditional linear scaling relationships. Moreover, the enhanced Ir-Ni second-shell interaction in Iremb-NiO plays a crucial role in imparting structural rigidity to Ir single-atoms, thereby mitigating Ir-dissolution and ensuring superior OER kinetics alongside sustained durability.

5.
J Am Chem Soc ; 146(6): 4013-4025, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308743

RESUMO

Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.

6.
J Am Chem Soc ; 146(33): 23158-23170, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110481

RESUMO

Starting from the dinickel(II) dihydride complex [ML(Ni-H)2] (1M), where L3- is a bis(tridentate) pyrazolate-bridged bis(ß-diketiminato) ligand and M+ is Na+ or K+, a series of complexes [KLNi2(S2)] (2K), [MLNi2S] (3M), [LNi2(SMe)] (4), and [LNi2(SH)] (5) has been prepared. The µ-sulfido complexes 3M can be reversibly oxidized at E1/2 = -1.17 V (in THF; vs Fc+/Fc) to give [LNi2(S•)] (6) featuring a bridging S-radical. 6 has been comprehensively characterized, including by X-ray diffraction, SQUID magnetometry, EPR and XAS/XES spectroscopies, and DFT calculations. The pKa of the µ-hydrosulfido complex 5 in THF is 30.8 ± 0.4, which defines a S-H bond dissociation free energy (BDFE) of 75.1 ± 1.0 kcal mol-1. 6 reacts with H atom donors such as TEMPO-H and xanthene to give 5, while 5 reacts with 2,4,6-tri(tert-butyl)phenoxy radical in a reverse H atom transfer to generate 6. These findings provide the first full characterization of a genuine M-(µ-S•-)-M complex and provide insights into its proton-coupled electron transfer (PCET) reactivity, which is of interest in view of the prominence of M-(µ-SH/µ-S)-M units in biological systems and heterogeneous catalysis.

7.
J Am Chem Soc ; 146(34): 23704-23716, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39192778

RESUMO

Although the reactivity of five-coordinate end-on superoxocopper(II) complexes, CuII(η1-O2•-), is dominated by hydrogen atom transfer, the majority of four-coordinate CuII(η1-O2•-) complexes published thus far display nucleophilic reactivity. To investigate the origin of this difference, we have developed a four-coordinate end-on superoxocopper(II) complex supported by a sterically encumbered bis(2-pyridylmethyl)amine ligand, dpb2-MeBPA (1), and compared its substrate reactivity with that of a five-coordinate end-on superoxocopper(II) complex ligated by a similarly substituted tris(2-pyridylmethyl)amine, dpb3-TMPA (2). Kinetic isotope effect (KIE) measurements and correlation of second-order rate constants (k2's) versus oxidation potentials (Eox) for a range of phenols indicates that the complex [CuII(η1-O2•-)(1)]+ reacts with phenols via a similar hydrogen atom transfer (HAT) mechanism to [CuII(η1-O2•-)(2)]+. However, [CuII(η1-O2•-)(1)]+ performs HAT much more quickly, with its k2 for reaction with 2,6-di-tert-butyl-4-methoxyphenol (MeO-ArOH) being >100 times greater. Furthermore, [CuII(η1-O2•-)(1)]+ can oxidize C-H bond substrates possessing stronger bonds than [CuII(η1-O2•-)(2)]+ is able to, and it reacts with N-methyl-9,10-dihydroacridine (MeAcrH2) approximately 200 times faster. The much greater facility for substrate oxidation displayed by [CuII(η1-O2•-)(1)]+ is attributed to it possessing higher inherent electrophilicity than [CuII(η1-O2•-)(2)]+, which is a direct consequence of its lower coordination number. These observations are of relevance to enzymes in which four-coordinate end-on superoxocopper(II) intermediates, rather than their five-coordinate congeners, are routinely invoked as the active oxidants responsible for substrate oxidation.

8.
J Am Chem Soc ; 146(31): 21729-21741, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078020

RESUMO

Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.

9.
Small ; : e2406375, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235360

RESUMO

Light-induced water splitting (hν-WS) for the production of hydrogen as a solar fuel is considered a promising sustainable strategy for the replacement of fossil fuels. An efficient system for hν-WS involves a photoactive material that, upon shining light, is capable of separating and transferring charges to catalysts for the hydrogen and oxygen evolution processes. Covalent triazine-based frameworks (CTFs) represent an interesting class of 2D organic light-absorbing materials that have recently emerged thanks to their tunable structural, optical and morphological properties. Typically, catalysts (Cat) are metallic nanoparticles generated in situ after photoelectroreduction of metal precursors or directly drop-casted on top of the CTF material to generate Cat-CTF assemblies. In this work, the synthesis, characterization and photocatalytic performance of a novel hybrid material, Ru-CTF, is reported, based on a CTF structure featuring dangling pyridyl groups that allow the Ru-tda (tda is [2,2':6',2'"-terpyridine]-6,6'"-dicarboxylic acid) water oxidation catalyst (WOC) unit to coordinate via covalent bond. The Ru-CTF molecular hybrid material can carry out the light-induced water oxidation reaction efficiently at neutral pH, reaching values of maximum TOF of 17 h-1 and TONs in the range of 220 using sodium persulfate as a sacrificial electron acceptor.

10.
J Synchrotron Radiat ; 31(Pt 3): 622-634, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662410

RESUMO

A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kß lines) and Zr to Ag (Lα, Lß), as well as light elements including P, S, Cl, K and Ca (Kα, Kß). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.

11.
Chemistry ; 30(25): e202304228, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415315

RESUMO

Colloidal and supported manganese nanoparticles were synthesized following an organometallic approach and applied in the catalytic transfer hydrogenation (CTH) of aldehydes and ketones. Reaction parameters for the preparation of colloidal nanoparticles (NPs) were optimized to yield small (2-2.5 nm) and well-dispersed NPs. Manganese NPs were further immobilized on an imidazolium-based supported ionic phase (SILP) and characterized to evaluate NP size, metal loading, and oxidation states. Oxidation of the Mn NPs by the support was observed resulting in an average formal oxidation state of +2.5. The MnOx@SILP material showed promising performance in the CTH of aldehydes and ketones using 2-propanol as a hydrogen donor, outperforming previously reported Mn NPs-based CTH catalysts in terms of metal loading-normalized turnover numbers. Interestingly, MnOx@SILP were found to lose activity upon air exposure, which correlates with an additional increase in the average oxidation state of Mn as revealed by X-ray absorption spectroscopic studies.

12.
Inorg Chem ; 63(35): 16217-16223, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39162299

RESUMO

Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kß2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kß2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kß″ transition appears alongside the Kß2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.

13.
Inorg Chem ; 63(39): 18468-18483, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39282749

RESUMO

The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.

14.
Inorg Chem ; 63(16): 7386-7400, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587408

RESUMO

The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.

15.
Inorg Chem ; 63(24): 11063-11078, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38814816

RESUMO

In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.


Assuntos
Domínio Catalítico , Cobre , Teoria da Densidade Funcional , Oxigenases de Função Mista , Serratia marcescens , Cobre/química , Cristalografia por Raios X , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Modelos Moleculares , Oxirredução , Polissacarídeos/química , Polissacarídeos/metabolismo , Serratia marcescens/enzimologia
16.
Phys Chem Chem Phys ; 26(29): 19960-19975, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38994715

RESUMO

Valence-to-core (VtC) X-ray emission spectroscopy offers the opportunity to probe the valence electronic structure of a system filtered by selection rules. From this, the nature of its ligands can be inferred. While a preceding 1s ionization creates a core hole, in VtC XES this core hole is filled with electrons from mainly ligand based orbitals. In this work, we investigated the trends in the observed VtC intensities for a series of transition metal halides, which spans the first row transition metals from manganese to copper. Further, with the aid of computational studies, we corroborated these trends and identified the mechanisms and factors that dictate the observed intensity trends. Small amounts of metal p contribution to the ligand orbitals are known to give rise to intensity of a VtC transition. By employing an LCAO (linear combination of atomic orbitals) approach, we were able to assess the amount of metal p contribution to the ligand molecular orbitals, as well as the role of the transition dipole moment and correlate these factors to the experimentally observed intensities. Finally, by employing an ano (atomic natural orbital) basis set within the calculations, the nature of the metal p contribution (3p vs. 4p) was qualitatively assessed and their trends discussed within the same transition metal halide series.

17.
Angew Chem Int Ed Engl ; 63(14): e202317038, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372407

RESUMO

Ammonia synthesis holds significant importance for both agricultural fertilizer production and emerging green energy applications. Here, we present a comprehensive characterization of a catalyst for mechanochemical ammonia synthesis, based on Cs-promoted Fe. The study sheds light on the catalyst's dynamic evolution under reaction conditions and the origin of deactivation. Initially, elemental Cs converts to CsH, followed by partial CsOH formation due to trace oxygen impurities on the surface of the Fe metal and the equipment. Concurrently, the mechanical milling process comminutes Fe, exposing fresh metallic Fe surfaces. This comminution correlates with an induction period observed during ammonia formation. Critical to the study, degradation of active Cs promoter species (CsH and CsNH2) into inactive CsOH emerged as the primary deactivation mechanism. By increasing the Cs content from 2.2 mol % to 4.2 mol %, we achieved stable, continuous ammonia synthesis for nearly 90 hours, showcasing one of the longest-running mechanocatalytic gas phase reactions. Studies of the temperature dependence of the reaction revealed negligible bulk temperature influence in the range of -10 °C to 100 °C, highlighting the dominance of mechanical action over bulk thermal effects. This study offers insights into the complex interplay between mechanical processing, reactive species, and deactivation mechanisms in mechanocatalytic ammonia synthesis.

18.
Angew Chem Int Ed Engl ; 63(36): e202405113, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864588

RESUMO

The catalytic relevance of Fe(IV) species in non-heme iron catalysis has motivated synthetic advances in well-defined five- and six-coordinate Fe(IV) complexes for a better understanding of their fundamental electronic structures and reactivities. Herein, we report the syntheses of FeDipp2 and FeMes2, a pair of unusual four-coordinate non-heme formally Fe(IV) complexes with S=1 ground states supported by strongly donating bisamide ligands. By combining spectroscopic characterization and computational modeling, we found that small variations in ligand aryl substituents resulted in substantial changes in both structures and bonding. This work highlights the strong donor capabilities and modularity of the bisamide ligand set. More broadly, it is a critical contribution to the utilization of ligand design to modulate molecular geometries and electronic structures of low-coordinate, high-valent iron complexes.

19.
J Am Chem Soc ; 145(33): 18477-18486, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565682

RESUMO

The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique µ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(µ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(µ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(µ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(µ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central µ4-S in the fully reduced 0-hole state.

20.
J Am Chem Soc ; 145(47): 25579-25594, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37970825

RESUMO

Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA