Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 595(7867): 415-420, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262212

RESUMO

Gut microorganisms modulate host phenotypes and are associated with numerous health effects in humans, ranging from host responses to cancer immunotherapy to metabolic disease and obesity. However, difficulty in accurate and high-throughput functional analysis of human gut microorganisms has hindered efforts to define mechanistic connections between individual microbial strains and host phenotypes. One key way in which the gut microbiome influences host physiology is through the production of small molecules1-3, yet progress in elucidating this chemical interplay has been hindered by limited tools calibrated to detect the products of anaerobic biochemistry in the gut. Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate the identification of microbiota-dependent metabolites in diverse sample types. We report the metabolic profiles of 178 gut microorganism strains using our library of 833 metabolites. Using this metabolomics resource, we establish deviations in the relationships between phylogeny and metabolism, use machine learning to discover a previously undescribed type of metabolism in Bacteroides, and reveal candidate biochemical pathways using comparative genomics. Microbiota-dependent metabolites can be detected in diverse biological fluids from gnotobiotic and conventionally colonized mice and traced back to the corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for characterizing microorganisms and interactions between microorganisms and their host.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metabolômica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides/genética , Bacteroides/metabolismo , Genes Bacterianos/genética , Genômica , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Camundongos , Nitrogênio/metabolismo , Fenótipo , Filogenia
2.
PLoS Biol ; 21(5): e3002125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205710

RESUMO

Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Biologia de Sistemas , Ecossistema , Actinobacteria/metabolismo
3.
Diabetologia ; 64(8): 1785-1794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33893822

RESUMO

AIMS/HYPOTHESIS: Oxylipins are lipid mediators derived from polyunsaturated fatty acids. Some oxylipins are proinflammatory (e.g. those derived from arachidonic acid [ARA]), others are pro-resolving of inflammation (e.g. those derived from α-linolenic acid [ALA], docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) and others may be both (e.g. those derived from linoleic acid [LA]). The goal of this study was to examine whether oxylipins are associated with incident type 1 diabetes. METHODS: We conducted a nested case-control analysis in the Diabetes Autoimmunity Study in the Young (DAISY), a prospective cohort study of children at risk of type 1 diabetes. Plasma levels of 14 ARA-derived oxylipins, ten LA-derived oxylipins, six ALA-derived oxylipins, four DHA-derived oxylipins and two EPA-related oxylipins were measured by ultra-HPLC-MS/MS at multiple timepoints related to autoantibody seroconversion in 72 type 1 diabetes cases and 71 control participants, which were frequency matched on age at autoantibody seroconversion (of the case), ethnicity and sample availability. Linear mixed models were used to obtain an age-adjusted mean of each oxylipin prior to type 1 diabetes. Age-adjusted mean oxylipins were tested for association with type 1 diabetes using logistic regression, adjusting for the high risk HLA genotype HLA-DR3/4,DQB1*0302. We also performed principal component analysis of the oxylipins and tested principal components (PCs) for association with type 1 diabetes. Finally, to investigate potential critical timepoints, we examined the association of oxylipins measured before and after autoantibody seroconversion (of the cases) using PCs of the oxylipins at those visits. RESULTS: The ARA-related oxylipin 5-HETE was associated with increased type 1 diabetes risk. Five LA-related oxylipins, two ALA-related oxylipins and one DHA-related oxylipin were associated with decreased type 1 diabetes risk. A profile of elevated LA- and ALA-related oxylipins (PC1) was associated with decreased type 1 diabetes risk (OR 0.61; 95% CI 0.40, 0.94). A profile of elevated ARA-related oxylipins (PC2) was associated with increased diabetes risk (OR 1.53; 95% CI 1.03, 2.29). A critical timepoint analysis showed type 1 diabetes was associated with a high ARA-related oxylipin profile at post-autoantibody-seroconversion but not pre-seroconversion. CONCLUSIONS/INTERPRETATION: The protective association of higher LA- and ALA-related oxylipins demonstrates the importance of both inflammation promotion and resolution in type 1 diabetes. Proinflammatory ARA-related oxylipins may play an important role once the autoimmune process has begun.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Oxilipinas/sangue , Adolescente , Ácido Araquidônico/sangue , Autoanticorpos/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Ácidos Docosa-Hexaenoicos/sangue , Feminino , Seguimentos , Glutamato Descarboxilase/imunologia , Antígeno HLA-DR3/genética , Antígeno HLA-DR4/genética , Humanos , Insulina/sangue , Insulina/imunologia , Ácido Linoleico/sangue , Masculino , Estudos Prospectivos , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Espectrometria de Massas em Tandem
4.
Pediatr Res ; 89(6): 1530-1540, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32726799

RESUMO

BACKGROUND: Oxylipins are formed from oxidation of omega-6 (n6) and omega-3 (n3) fatty acids (FAs). Evidence for inflammatory effects comes mostly from adults. METHODS: Oxylipins from n6 FA (27 n6-oxylipins) and n3 FA (12 n3-oxylipins) were measured through ultra-high-performance liquid chromatography-mass spectrometry (LC-MS/MS) in plasma from 111 children at risk of type 1 diabetes (age 1-17 years) studied longitudinally. Oxylipin precursor FAs (arachidonic acid, linoleic acid, alpha-linolenic acid, docosahexaenoic acid, eicosapentaenoic acid) were measured in red blood cell (RBC) membrane and plasma. Precursor FAs dietary intake was measured through food frequency questionnaire and environmental tobacco smoke (ETS) through questionnaires. Linear mixed models were used to test oxylipins with predictors. RESULTS: Age associated with 15 n6- and 6 n3-oxylipins; race/ethnicity associated with 3 n6- and 1 n3-oxylipins; sex associated with 2 n6-oxylipins. ETS associated with lipoxin-A4. Oxylipins associated with precursor FAs in plasma more often than RBC. RBC levels and dietary intake of precursor FAs more consistently associated with n3-oxylipins than with n6-oxylipins. CONCLUSIONS: In healthy children, oxylipin levels change with age. Oxylipins associated with precursor FAs more often in plasma than RBC or diet, suggesting that inflammatory regulation leading to FA release into plasma may also be a determinant of oxylipin generation. IMPACT: This is the first study to examine predictors of oxylipins in healthy children at risk of type 1 diabetes. In healthy children at risk of type 1 diabetes, many oxylipins change with age, and most oxylipins do not differ by sex or race/ethnicity. Environmental tobacco smoke exposure was associated with the presence of lipoxin A4. Omega-6- and omega-3-related oxylipin levels were consistently associated with their respective precursor fatty acid levels measured in the plasma. Proportionally more omega-3 compared to omega-6 oxylipins were associated with dietary intake and red blood cell membrane levels of the respective precursor fatty acid.


Assuntos
Oxilipinas/sangue , Pediatria , Adolescente , Criança , Pré-Escolar , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Feminino , Humanos , Lactente , Masculino
5.
Pediatr Diabetes ; 21(7): 1202-1209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32686271

RESUMO

OBJECTIVE: Our aim was to elucidate the role of diet in type 1 diabetes (T1D) by examining combinations of nutrient intake in the progression from islet autoimmunity (IA) to T1D. METHODS: We measured 2457 metabolites and dietary intake at the time of seroconversion in 132 IA-positive children in the prospective Diabetes Autoimmunity Study in the Young. IA was defined as the first of two consecutive visits positive for at least one autoantibody (insulin, GAD, IA-2, or ZnT8). By December 2018, 40 children progressed to T1D. Intakes of 38 nutrients were estimated from semiquantitative food frequency questionnaires. We tested the association of each metabolite with progression to T1D using multivariable Cox regression. Nutrient patterns that best explained variation in candidate metabolites were identified using reduced rank regression (RRR), and their association with progression to T1D was tested using Cox regression adjusting for age at seroconversion and high-risk HLA genotype. RESULTS: In stepwise selection, 22 nutrients significantly predicted at least two of the 13 most significant metabolites associated with progression to T1D, and were included in RRR. A nutrient pattern corresponding to intake lower in linoleic acid, niacin, and riboflavin, and higher in total sugars, explained 18% of metabolite variability. Children scoring higher on this metabolite-related nutrient pattern at seroconversion had increased risk for progressing to T1D (HR = 3.17, 95%CI = 1.42-7.05). CONCLUSIONS: Combinations of nutrient intake reflecting candidate metabolites are associated with increased risk of T1D, and may help focus dietary prevention efforts.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Dieta , Metabolômica , Autoimunidade , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Progressão da Doença , Feminino , Humanos , Ilhotas Pancreáticas , Masculino , Nutrientes , Modelos de Riscos Proporcionais , Fatores de Risco , Soroconversão , Inquéritos e Questionários
6.
FASEB J ; 31(4): 1434-1448, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007783

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.


Assuntos
Antioxidantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Cofator PQQ/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ceramidas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , PPAR gama/metabolismo , Cofator PQQ/administração & dosagem , Cofator PQQ/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/etiologia
7.
Carcinogenesis ; 38(3): 271-280, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049629

RESUMO

Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer (NSCLC) adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma: (1) increased glycosylation and glutaminolysis; (2) elevated Nrf2 activation; (3) increase in nicotinic and nicotinamide salvaging pathways; and (4) elevated polyamine biosynthesis linked to differential regulation of the SAM/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompanies early stage lung tumorigenesis and highlight potential therapeutic targets.

8.
Anal Chem ; 89(6): 3250-3255, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28225594

RESUMO

Untargeted metabolomics by liquid chromatography-mass spectrometry generates data-rich chromatograms in the form of m/z-retention time features. Managing such datasets is a bottleneck. Many popular data processing tools, including XCMS-online and MZmine2, yield numerous false-positive peak detections. Flagging and removing such false peaks manually is a time-consuming task and prone to human error. We present a web application, Mass Spectral Feature List Optimizer (MS-FLO), to improve the quality of feature lists after initial processing to expedite the process of data curation. The tool utilizes retention time alignments, accurate mass tolerances, Pearson's correlation analysis, and peak height similarity to identify ion adducts, duplicate peak reports, and isotopic features of the main monoisotopic metabolites. Removing such erroneous peaks reduces the overall number of metabolites in data reports and improves the quality of subsequent statistical investigations. To demonstrate the effectiveness of MS-FLO, we processed 28 biological studies and uploaded raw and results data to the Metabolomics Workbench website ( www.metabolomicsworkbench.org ), encompassing 1481 chromatograms produced by two different data processing programs used in-house (MZmine2 and later MS-DIAL). Post-processing of datasets with MS-FLO yielded a 7.8% automated reduction of total peak features and flagged an additional 7.9% of features, per dataset, for review by the user. When manually curated, 87% of these additional flagged features were verified false positives. MS-FLO is an open source web application that is freely available for use at http://msflo.fiehnlab.ucdavis.edu .


Assuntos
Metabolômica , Software , Cromatografia Líquida , Reações Falso-Positivas , Humanos , Espectrometria de Massas
9.
Nat Methods ; 10(8): 755-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817071

RESUMO

Current tandem mass spectral libraries for lipid annotations in metabolomics are limited in size and diversity. We provide a freely available computer-generated tandem mass spectral library of 212,516 spectra covering 119,200 compounds from 26 lipid compound classes, including phospholipids, glycerolipids, bacterial lipoglycans and plant glycolipids. We show platform independence by using tandem mass spectra from 40 different mass spectrometer types including low-resolution and high-resolution instruments.


Assuntos
Bases de Dados Factuais , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos
10.
Clin Proteomics ; 13: 31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799870

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis. METHODS: We utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables. RESULTS: Top cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01). CONCLUSION: These results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets.

11.
Nat Microbiol ; 9(4): 1036-1048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486074

RESUMO

Microbial community dynamics arise through interspecies interactions, including resource competition, cross-feeding and pH modulation. The individual contributions of these mechanisms to community structure are challenging to untangle. Here we develop a framework to estimate multispecies niche overlaps by combining metabolomics data of individual species, growth measurements in spent media and mathematical models. We applied our framework to an in vitro model system comprising 15 human gut commensals in complex media and showed that a simple model of resource competition accounted for most pairwise interactions. Next, we built a coarse-grained consumer-resource model by grouping metabolomic features depleted by the same set of species and showed that this model predicted the composition of 2-member to 15-member communities with reasonable accuracy. Furthermore, we found that incorporation of cross-feeding and pH-mediated interactions improved model predictions of species coexistence. Our theoretical model and experimental framework can be applied to characterize interspecies interactions in bacterial communities in vitro.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bactérias , Modelos Teóricos , Metabolômica
12.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711645

RESUMO

Both viruses and bacteria produce 'pathogen associated molecular patterns' that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites while viruses could change metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of Murine Leukemia Virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus, open a new avenue for future investigations.

13.
Viruses ; 15(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36851600

RESUMO

Both viruses and bacteria produce "pathogen associated molecular patterns" that may affect microbial pathogenesis and anti-microbial responses. Additionally, bacteria produce metabolites, while viruses could change the metabolic profiles of the infected cells. Here, we used an unbiased metabolomics approach to profile metabolites in spleens and blood of murine leukemia virus-infected mice monocolonized with Lactobacillus murinus to show that viral infection significantly changes the metabolite profile of monocolonized mice. We hypothesize that these changes could contribute to viral pathogenesis or to the host response against the virus and thus open a new avenue for future investigations.


Assuntos
Infecções por Retroviridae , Animais , Camundongos , Bactérias , Metabolômica , Vírus da Leucemia Murina , Baço
14.
bioRxiv ; 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090555

RESUMO

Ketone bodies are short chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative source of energy for the brain, heart, and skeletal muscle. Beyond this classical metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a pleiotropic signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This novel protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments, including the mitochondria and nucleus. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against the ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s), which are increased by deacetylation inhibition and include likely acetylations. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

15.
iScience ; 26(7): 107235, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485368

RESUMO

Ketone bodies are short-chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative energy source for the brain, heart, and skeletal muscle. Beyond this metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s) that likely include acetylation. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

16.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719070

RESUMO

Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.


Assuntos
Jejum Intermitente , Regeneração Hepática , Camundongos , Animais , Fígado , Jejum , Hepatócitos , Proliferação de Células
17.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961398

RESUMO

Urine is assayed alongside blood in medicine, yet current clinical diagnostic tests utilize only a small fraction of its total biomolecular repertoire, potentially foregoing high-resolution insights into human health and disease. In this work, we characterized the joint landscapes of transcriptomic and metabolomic signals in human urine. We also compared the urine transcriptome to plasma cell-free RNA, identifying a distinct cell type repertoire and enrichment for metabolic signal. Untargeted metabolomic measurements identified a complementary set of pathways to the transcriptomic analysis. Our findings suggest that urine is a promising biofluid yielding prognostic and detailed insights for hard-to-biopsy tissues with low representation in the blood, offering promise for a new generation of liquid biopsies.

18.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693407

RESUMO

Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.

19.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453845

RESUMO

Background: Novel, non-invasive diagnostic biomarkers that facilitate early intervention in head and neck cancer are urgently needed. Polyamine metabolites have been observed to be elevated in numerous cancer types and correlated with poor prognosis. The aim of this study was to assess the concentration of polyamines in the saliva and urine from head and neck cancer (HNC) patients, compared to healthy controls. Methods: Targeted metabolomic analysis was performed on saliva and urine from 39 HNC patient samples and compared to 89 healthy controls using a quantitative, targeted liquid chromatography mass spectrometry approach. Results: The metabolites N1-acetylspermine (ASP), N8-acetylspermidine (ASD) and N1,N12-diacetylspermine (DAS) were detected at significantly different concentrations in the urine of HNC patients as compared to healthy controls. Only ASP was detected at elevated levels in HNC saliva as compared to healthy controls. Conclusion: These data suggest that assessment of polyamine-based metabolite biomarkers within the saliva and urine warrants further investigation as a potential diagnostic in HNC patients.

20.
Metabolites ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34436483

RESUMO

Environmental factors including viruses, diet, and the metabolome have been linked with the appearance of islet autoimmunity (IA) that precedes development of type 1 diabetes (T1D). We measured global DNA methylation (DNAm) and untargeted metabolomics prior to IA and at the time of seroconversion to IA in 92 IA cases and 91 controls from the Diabetes Autoimmunity Study in the Young (DAISY). Causal mediation models were used to identify seven DNAm probe-metabolite pairs in which the metabolite measured at IA mediated the protective effect of the DNAm probe measured prior to IA against IA risk. These pairs included five DNAm probes mediated by histidine (a metabolite known to affect T1D risk), one probe (cg01604946) mediated by phostidyl choline p-32:0 or o-32:1, and one probe (cg00390143) mediated by sphingomyelin d34:2. The top 100 DNAm probes were over-represented in six reactome pathways at the FDR <0.1 level (q = 0.071), including transport of small molecules and inositol phosphate metabolism. While the causal pathways in our mediation models require further investigation to better understand the biological mechanisms, we identified seven methylation sites that may improve our understanding of epigenetic protection against T1D as mediated by the metabolome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA