Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(7): 4127-4147, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35325198

RESUMO

We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Nucleic Acids Res ; 48(9): 4976-4991, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32232414

RESUMO

The reaction mechanism by which the shelterin protein POT1 (Protection of Telomeres 1) unfolds human telomeric G-quadruplex structures is not fully understood. We report here kinetic, thermodynamic, hydrodynamic and computational studies that show that a conformational selection mechanism, in which POT1 binding is coupled to an obligatory unfolding reaction, is the most plausible mechanism. Stopped-flow kinetic and spectroscopic titration studies, along with isothermal calorimetry, were used to show that binding of the single-strand oligonucleotide d[TTAGGGTTAG] to POT1 is both fast (80 ms) and strong (-10.1 ± 0.3 kcal mol-1). In sharp contrast, kinetic studies showed the binding of POT1 to an initially folded 24 nt G-quadruplex structure is four orders of magnitude slower. Fluorescence, circular dichroism and analytical ultracentrifugation studies showed that POT1 binding is coupled to quadruplex unfolding, with a final complex with a stoichiometry of 2 POT1 per 24 nt DNA. The binding isotherm for the POT1-quadruplex interaction was sigmoidal, indicative of a complex reaction. A conformational selection model that includes equilibrium constants for both G-quadruplex unfolding and POT1 binding to the resultant single-strand provided an excellent quantitative fit to the experimental binding data. POT1 unfolded and bound to any conformational form of human telomeric G-quadruplex (antiparallel, hybrid, parallel monomers or a 48 nt sequence with two contiguous quadruplexes), but did not avidly interact with duplex DNA or with other G-quadruplex structures. Finally, molecular dynamics simulations provided a detailed structural model of a 2:1 POT1:DNA complex that is fully consistent with experimental biophysical results.


Assuntos
Quadruplex G , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Termodinâmica
3.
PLoS One ; 17(6): e0270165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709230

RESUMO

DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.


Assuntos
Quadruplex G , DNA/genética , Descoberta de Drogas , Ligantes , Regiões Promotoras Genéticas
4.
PLoS One ; 16(3): e0245675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784306

RESUMO

The protein POT1 (Protection of Telomeres 1) is an integral part of the shelterin complex that protects the ends of human chromosomes from degradation or end fusions. It is the only component of shelterin that binds single-stranded DNA. We describe here the application of two separate fluorescent thermal shift assays (FTSA) that provide quantitative biophysical characterization of POT1 stability and its interactions. The first assay uses Sypro Orange™ and monitors the thermal stability of POT1 and its binding under a variety of conditions. This assay is useful for the quality control of POT1 preparations, for biophysical characterization of its DNA binding and, potentially, as an efficient screening tool for binding of small molecule drug candidates. The second assay uses a FRET-labeled human telomeric G-quadruplex structure that reveals the effects of POT1 binding on thermal stability from the DNA frame of reference. These complementary assays provide efficient biophysical approaches for the quantitative characterization of multiple aspects of POT1 structure and function. The results from these assays provide thermodynamics details of POT1 folding, the sequence selectivity of its DNA binding and the thermodynamic profile for its binding to its preferred DNA binding sequence. Most significantly, results from these assays elucidate two mechanisms for the inhibition of POT1 -DNA interactions. The first is by competitive inhibition at the POT1 DNA binding site. The second is indirect and is by stabilization of G-quadruplex formation within the normal POT1 single-stranded DNA sequence to prevent POT1 binding.


Assuntos
Espectrometria de Fluorescência , Proteínas de Ligação a Telômeros/metabolismo , Temperatura , Quadruplex G , Humanos , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Complexo Shelterina , Telômero/química , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA