Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(44): 13687-92, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26460033

RESUMO

Studies of neural oscillations in the beta band (13-30 Hz) have demonstrated modulations in beta-band power associated with sensory and motor events on time scales of 1 s or more, and have shown that these are exaggerated in Parkinson's disease. However, even early reports of beta activity noted extremely fleeting episodes of beta-band oscillation lasting <150 ms. Because the interpretation of possible functions for beta-band oscillations depends strongly on the time scale over which they occur, and because of these oscillations' potential importance in Parkinson's disease and related disorders, we analyzed in detail the distributions of duration and power for beta-band activity in a large dataset recorded in the striatum and motor-premotor cortex of macaque monkeys performing reaching tasks. Both regions exhibited typical beta-band suppression during movement and postmovement rebounds of up to 3 s as viewed in data averaged across trials, but single-trial analysis showed that most beta oscillations occurred in brief bursts, commonly 90-115 ms long. In the motor cortex, the burst probabilities peaked following the last movement, but in the striatum, the burst probabilities peaked at task end, after reward, and continued through the postperformance period. Thus, what appear to be extended periods of postperformance beta-band synchronization reflect primarily the modulated densities of short bursts of synchrony occurring in region-specific and task-time-specific patterns. We suggest that these short-time-scale events likely underlie the functions of most beta-band activity, so that prolongation of these beta episodes, as observed in Parkinson's disease, could produce deleterious network-level signaling.


Assuntos
Corpo Estriado/fisiologia , Macaca/fisiologia , Córtex Motor/fisiologia , Movimento , Animais , Humanos
2.
Nat Commun ; 15(1): 662, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253526

RESUMO

Trial history biases and lapses are two of the most common suboptimalities observed during perceptual decision-making. These suboptimalities are routinely assumed to arise from distinct processes. However, previous work has suggested that they covary in their prevalence and that their proposed neural substrates overlap. Here we demonstrate that during decision-making, history biases and apparent lapses can both arise from a common cognitive process that is optimal under mistaken beliefs that the world is changing i.e. nonstationary. This corresponds to an accumulation-to-bound model with history-dependent updates to the initial state of the accumulator. We test our model's predictions about the relative prevalence of history biases and lapses, and show that they are robustly borne out in two distinct decision-making datasets of male rats, including data from a novel reaction time task. Our model improves the ability to precisely predict decision-making dynamics within and across trials, by positing a process through which agents can generate quasi-stochastic choices.


Assuntos
Processos Mentais , Masculino , Animais , Ratos , Viés , Tempo de Reação
3.
Nat Commun ; 15(1): 6023, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019848

RESUMO

Neuronal responses during behavior are diverse, ranging from highly reliable 'classical' responses to irregular 'non-classically responsive' firing. While a continuum of response properties is observed across neural systems, little is known about the synaptic origins and contributions of diverse responses to network function, perception, and behavior. To capture the heterogeneous responses measured from auditory cortex of rodents performing a frequency recognition task, we use a novel task-performing spiking recurrent neural network incorporating spike-timing-dependent plasticity. Reliable and irregular units contribute differentially to task performance via output and recurrent connections, respectively. Excitatory plasticity shifts the response distribution while inhibition constrains its diversity. Together both improve task performance with full network engagement. The same local patterns of synaptic inputs predict spiking response properties of network units and auditory cortical neurons from in vivo whole-cell recordings during behavior. Thus, diverse neural responses contribute to network function and emerge from synaptic plasticity rules.


Assuntos
Potenciais de Ação , Córtex Auditivo , Plasticidade Neuronal , Neurônios , Sinapses , Animais , Plasticidade Neuronal/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/citologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Ratos , Rede Nervosa/fisiologia , Modelos Neurológicos , Análise e Desempenho de Tarefas
4.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778392

RESUMO

Trial history biases and lapses are two of the most common suboptimalities observed during perceptual decision-making. These suboptimalities are routinely assumed to arise from distinct processes. However, several hints in the literature suggest that they covary in their prevalence and that their proposed neural substrates overlap - what could underlie these links? Here we demonstrate that history biases and apparent lapses can both arise from a common cognitive process that is normative under misbeliefs about non-stationarity in the world. This corresponds to an accumulation-to-bound model with history-dependent updates to the initial state of the accumulator. We test our model's predictions about the relative prevalence of history biases and lapses, and show that they are robustly borne out in two distinct rat decision-making datasets, including data from a novel reaction time task. Our model improves the ability to precisely predict decision-making dynamics within and across trials, by positing a process through which agents can generate quasi-stochastic choices.

5.
Neuron ; 111(5): 631-649.e10, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630961

RESUMO

Neural activity is often described in terms of population-level factors extracted from the responses of many neurons. Factors provide a lower-dimensional description with the aim of shedding light on network computations. Yet, mechanistically, computations are performed not by continuously valued factors but by interactions among neurons that spike discretely and variably. Models provide a means of bridging these levels of description. We developed a general method for training model networks of spiking neurons by leveraging factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-building framework, this formalism illustrates how reliable and continuously valued factors can arise from seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network models with different levels of realism. The relationship between spikes and factors in such networks provides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.


Assuntos
Redes Neurais de Computação , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologia , Modelos Neurológicos
6.
bioRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904994

RESUMO

Perceptual decision-making is the process by which an animal uses sensory stimuli to choose an action or mental proposition. This process is thought to be mediated by neurons organized as attractor networks 1,2 . However, whether attractor dynamics underlie decision behavior and the complex neuronal responses remains unclear. Here we use an unsupervised, deep learning-based method to discover decision-related dynamics from the simultaneous activity of neurons in frontal cortex and striatum of rats while they accumulate pulsatile auditory evidence. We show that contrary to prevailing hypotheses, attractors play a role only after a transition from a regime in the dynamics that is strongly driven by inputs to one dominated by the intrinsic dynamics. The initial regime mediates evidence accumulation, and the subsequent intrinsic-dominant regime subserves decision commitment. This regime transition is coupled to a rapid reorganization in the representation of the decision process in the neural population (a change in the "neural mode" along which the process develops). A simplified model approximating the coupled transition in the dynamics and neural mode allows inferring, from each trial's neural activity, the internal decision commitment time in that trial, and captures diverse and complex single-neuron temporal profiles, such as ramping and stepping 3-5 . It also captures trial-averaged curved trajectories 6-8 , and reveals distinctions between brain regions. Our results show that the formation of a perceptual choice involves a rapid, coordinated transition in both the dynamical regime and the neural mode of the decision process, and suggest pairing deep learning and parsimonious models as a promising approach for understanding complex data.

7.
J Comput Neurosci ; 33(1): 1-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22089473

RESUMO

We discuss methods for optimally inferring the synaptic inputs to an electrotonically compact neuron, given intracellular voltage-clamp or current-clamp recordings from the postsynaptic cell. These methods are based on sequential Monte Carlo techniques ("particle filtering"). We demonstrate, on model data, that these methods can recover the time course of excitatory and inhibitory synaptic inputs accurately on a single trial. Depending on the observation noise level, no averaging over multiple trials may be required. However, excitatory inputs are consistently inferred more accurately than inhibitory inputs at physiological resting potentials, due to the stronger driving force associated with excitatory conductances. Once these synaptic input time courses are recovered, it becomes possible to fit (via tractable convex optimization techniques) models describing the relationship between the sensory stimulus and the observed synaptic input. We develop both parametric and nonparametric expectation-maximization (EM) algorithms that consist of alternating iterations between these synaptic recovery and model estimation steps. We employ a fast, robust convex optimization-based method to effectively initialize the filter; these fast methods may be of independent interest. The proposed methods could be applied to better understand the balance between excitation and inhibition in sensory processing in vivo.


Assuntos
Potenciais da Membrana/fisiologia , Modelos Neurológicos , Método de Monte Carlo , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Biofísica , Estimulação Elétrica , Técnicas de Patch-Clamp , Processos Estocásticos
8.
Nat Commun ; 10(1): 3366, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358740

RESUMO

Working memory is critical to cognition, decoupling behavior from the immediate world. Yet, it is imperfect; internal noise introduces errors into memory representations. Such errors have been shown to accumulate over time and increase with the number of items simultaneously held in working memory. Here, we show that discrete attractor dynamics mitigate the impact of noise on working memory. These dynamics pull memories towards a few stable representations in mnemonic space, inducing a bias in memory representations but reducing the effect of random diffusion. Model-based and model-free analyses of human and monkey behavior show that discrete attractor dynamics account for the distribution, bias, and precision of working memory reports. Furthermore, attractor dynamics are adaptive. They increase in strength as noise increases with memory load and experiments in humans show these dynamics adapt to the statistics of the environment, such that memories drift towards contextually-predicted values. Together, our results suggest attractor dynamics mitigate errors in working memory by counteracting noise and integrating contextual information into memories.


Assuntos
Algoritmos , Cognição/fisiologia , Macaca mulatta/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Percepção Visual/fisiologia , Animais , Percepção de Cores/fisiologia , Entropia , Humanos , Masculino , Fatores de Tempo
9.
Neuron ; 104(4): 810-824.e9, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31564591

RESUMO

Neural activity throughout the cortex is correlated with perceptual decisions, but inactivation studies suggest that only a small number of areas are necessary for these behaviors. Here we show that the number of required cortical areas and their dynamics vary across related tasks with different cognitive computations. In a visually guided virtual T-maze task, bilateral inactivation of only a few dorsal cortical regions impaired performance. In contrast, in tasks requiring evidence accumulation and/or post-stimulus memory, performance was impaired by inactivation of widespread cortical areas with diverse patterns of behavioral deficits across areas and tasks. Wide-field imaging revealed widespread ramps of Ca2+ activity during the accumulation and visually guided tasks. Additionally, during accumulation, different regions had more diverse activity profiles, leading to reduced inter-area correlations. Using a modular recurrent neural network model trained to perform analogous tasks, we argue that differences in computational strategies alone could explain these findings.


Assuntos
Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Redes Neurais de Computação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Elife ; 82019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30688649

RESUMO

Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here, we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons - particularly those without obvious task-related, trial-averaged firing rate modulation - to be assessed for behavioral relevance on single trials.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Algoritmos , Animais , Comportamento Animal , Ratos Sprague-Dawley , Análise e Desempenho de Tarefas , Fatores de Tempo
11.
PLoS One ; 13(2): e0191527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29415041

RESUMO

Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.


Assuntos
Redes Neurais de Computação , Algoritmos , Simulação por Computador
12.
Nat Neurosci ; 19(3): 350-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26906501

RESUMO

Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.


Assuntos
Potenciais de Ação/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA