Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 118(7): 1588-1601, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101711

RESUMO

The lipid matrix in the outer layer of mammalian skin, the stratum corneum, has been previously investigated by multiple biophysical techniques aimed at identifying hydrophilic and lipophilic pathways of permeation. Although consensus is developing over the microscopic structure of the lipid matrix, no molecular-resolution model describes the permeability of all chemical species simultaneously. Using molecular dynamics simulations of a model mixture of skin lipids, the self-assembly of the lipid matrix lamellae has been studied. At higher humidity, the resulting lamellar phase is maintained by partitioning excess water into isolated droplets of controlled size and spatial distribution. The droplets may fuse together to form intralamellar water channels, thereby providing a pathway for the permeation of hydrophilic species. These results reconcile competing data on the outer skin's structure and broaden the scope of molecular-based methods to improve the safety of topical products and to advance transdermal drug delivery.


Assuntos
Pele , Água , Animais , Epiderme , Lipídeos , Permeabilidade
2.
J Chem Phys ; 143(24): 243144, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723629

RESUMO

The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.


Assuntos
Alcanos/química , Colesterol/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Termodinâmica
3.
Langmuir ; 30(46): 13942-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25354090

RESUMO

Since computing resources have advanced enough to allow routine molecular simulation studies of drug molecules interacting with biologically relevant membranes, a considerable amount of work has been carried out with fluid phospholipid systems. However, there is very little work in the literature on drug interactions with gel phase lipids. This poses a significant limitation for understanding permeation through the stratum corneum where the primary pathway is expected to be through a highly ordered lipid matrix. To address this point, we analyzed the interactions of p-aminobenzoic acid (PABA) and its ethyl (benzocaine) and butyl (butamben) esters with two membrane bilayers, which differ in their fluidity at ambient conditions. We considered a dioleoylphosphatidylcholine (DOPC) bilayer in a fluid state and a ceramide 2 (CER2, ceramide NS) bilayer in a gel phase. We carried out unbiased (100 ns long) and biased z-constraint molecular dynamics simulations and calculated the free energy profiles of all molecules along the bilayer normal. The free energy profiles converged significantly slower for the gel phase. While the compounds have comparable affinities for both membranes, they exhibit penetration barriers almost 3 times higher in the gel phase CER2 bilayer. This elevated barrier and slower diffusion in the CER2 bilayer, which are caused by the high ordering of CER2 lipid chains, explain the low permeability of the gel phase membranes. We also compared the free energy profiles from MD simulations with those obtained from COSMOmic. This method provided the same trends in behavior for the guest molecules in both bilayers; however, the penetration barriers calculated by COSMOmic did not differ between membranes. In conclusion, we show how membrane fluid properties affect the interaction of drug-like molecules with membranes.


Assuntos
Anestésicos Locais , Benzocaína/análogos & derivados , Ceramidas/química , Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Anestésicos Locais/química , Anestésicos Locais/farmacocinética , Benzocaína/química , Benzocaína/farmacocinética
4.
J Chem Phys ; 141(22): 22D526, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494797

RESUMO

The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."


Assuntos
Desidratação , Epiderme/química , Ácidos Graxos/química , Água/química , Animais , Desidratação/metabolismo , Humanos , Modelos Biológicos , Simulação de Dinâmica Molecular
5.
Biochim Biophys Acta ; 1808(2): 530-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20385097

RESUMO

The M2 protein of influenza A virus performs the crucial function of transporting protons to the interior of virions enclosed in the endosome. Adamantane drugs, amantadine (AMN) and rimantidine (RMN), block the proton conduction in some strains, and have been used for the treatment and prophylaxis of influenza A infections. The structures of the transmembrane (TM) region of M2 that have been solved in micelles using NMR (residues 23-60) (Schnell and Chou, 2008) and by X-ray crystallography (residues 22-46) (Stouffer et al., 2008) suggest different drug binding sites: external and internal for RMN and AMN, respectively. We have used molecular dynamics (MD) simulations to investigate the nature of the binding site and binding mode of adamantane drugs on the membrane-bound tetrameric M2-TM peptide bundles using as initial conformations the low-pH AMN-bound crystal structure, a high-pH model derived from the drug-free crystal structure, and the high-pH NMR structure. The MD simulations indicate that under both low- and high-pH conditions, AMN is stable inside the tetrameric bundle, spanning the region between residues Val27 to Gly34. At low pH the polar group of AMN is oriented toward the His37 gate, while under high-pH conditions its orientation exhibits large fluctuations. The present MD simulations also suggest that AMN and RMN molecules do not show strong affinity to the external binding sites.


Assuntos
Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Amantadina/metabolismo , Antivirais/metabolismo , Sítios de Ligação , Farmacorresistência Viral , Concentração de Íons de Hidrogênio , Vírus da Influenza A/efeitos dos fármacos , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Prótons , Rimantadina/metabolismo
6.
J Chem Theory Comput ; 10(9): 4143-51, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26588554

RESUMO

Studies of drug-membrane interactions witness an ever-growing interest, as penetration, accumulation, and positioning of drugs play a crucial role in drug delivery and metabolism in human body. Molecular dynamics simulations complement nicely experimental measurements and provide us with new insight into drug-membrane interactions; however, the quality of the theoretical data dramatically depends on the quality of the force field used. We calculated the free energy profiles of 11 molecules through a model dimyristoylphosphatidylcholine (DMPC) membrane bilayer using five force fields, namely Berger, Slipids, CHARMM36, GAFFlipids, and GROMOS 43A1-S3. For the sake of comparison, we also employed the semicontinuous tool COSMOmic. High correlation was observed between theoretical and experimental partition coefficients (log K). Partition coefficients calculated by all-atomic force fields (Slipids, CHARMM36, and GAFFlipids) and COSMOmic differed by less than 0.75 log units from the experiment and Slipids emerged as the best performing force field. This work provides the following recommendations (i) for a global, systematic and high throughput thermodynamic evaluations (e.g., log K) of drugs COSMOmic is a tool of choice due to low computational costs; (ii) for studies of the hydrophilic molecules CHARMM36 should be considered; and (iii) for studies of more complex systems, taking into account all pros and cons, Slipids is the force field of choice.

7.
Science ; 328(5981): 1009-14, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20489021

RESUMO

Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.


Assuntos
Dendrímeros/química , Membranas Artificiais , Nanoestruturas , Antibióticos Antineoplásicos/administração & dosagem , Materiais Biomiméticos/química , Microscopia Crioeletrônica , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Propriedades de Superfície , Tensoativos/química , Água
8.
Nano Lett ; 8(11): 3626-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18855461

RESUMO

Self-assembly at a liquid-liquid interface is a powerful experimental route to novel nanomaterials. We report herein a computational study of peptide nanotube formation at an oil-water interface. We probe interfacial self-assembly and nanotube formation of the cyclic octapeptide, cyclo [(-L-Trp-D-Leu-)4] as an illustrative example. Individual peptide rings are rapidly adsorbed at the liquid-liquid interface where they self-assemble. Monomeric and dimeric peptide rings lie with their molecular planes mostly parallel to the interface. Longer oligomeric nanotubes are increasingly tilted at the interface and grow by an Oswald ripening mechanism to eventually align their tube axis parallel to the interface. The present results on nanotube assembly suggest that computation will be a useful complement to experiment in understanding the nature of self-assembly of nanomaterials at liquid-liquid interfaces.


Assuntos
Sondas Moleculares/química , Nanotubos de Peptídeos/química , Simulação por Computador , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA