Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768895

RESUMO

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Microscopia Crioeletrônica , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Mutação de Sentido Incorreto , Nanoestruturas/química , Rim Policístico Autossômico Dominante/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Canais de Cátion TRPP/genética
2.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33503406

RESUMO

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Assuntos
Modelos Moleculares , Tamoxifeno/química , Canais de Sódio Disparados por Voltagem/química , Células HEK293 , Humanos
3.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763973

RESUMO

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Assuntos
Canais de Cátion TRPP , Humanos , Cálcio/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216541

RESUMO

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Assuntos
Transtorno do Espectro Autista , Cílios , Camundongos , Animais , Cílios/metabolismo , Transtorno do Espectro Autista/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Receptores de Superfície Celular/metabolismo , Canais de Cálcio/metabolismo
5.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158562

RESUMO

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Assuntos
Canais de Cátion TRPP , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Canais de Cátion TRPP/química , Transdução de Sinais , Transporte de Íons , Canais de Potencial de Receptor Transitório/genética , Mutação , Receptores de Superfície Celular/metabolismo , Canais de Cálcio/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(19): 10329-10338, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332171

RESUMO

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.


Assuntos
Cálcio/metabolismo , Cílios/patologia , Ativação do Canal Iônico , Mutação , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/metabolismo , Cílios/metabolismo , Células HEK293 , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Domínios Proteicos , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
7.
J Cell Sci ; 133(24)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33199522

RESUMO

Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Cílios/metabolismo , Motivos EF Hand , Camundongos , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(31): 15540-15549, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315976

RESUMO

The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Receptores de Superfície Celular/metabolismo , Canais de Cálcio/genética , Células HEK293 , Humanos , Domínios Proteicos , Receptores de Superfície Celular/genética
9.
Proc Natl Acad Sci U S A ; 116(52): 26549-26554, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822620

RESUMO

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

10.
EMBO J ; 35(8): 820-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873592

RESUMO

Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na(+) ≈ Li(+) â‰« K(+), Ca(2+), Mg(2+)) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.


Assuntos
Canais de Sódio/química , Canais de Sódio/metabolismo , Sódio/metabolismo , Alphaproteobacteria/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cátions/metabolismo , Cristalografia por Raios X , Ácido Glutâmico/genética , Células HEK293 , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Mutação , Técnicas de Patch-Clamp , Permeabilidade , Conformação Proteica , Canais de Sódio/genética , Eletricidade Estática
11.
Proc Natl Acad Sci U S A ; 114(30): E6079-E6088, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696294

RESUMO

TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles. M7Vs accumulate Zn2+ in a glutathione-enriched, reduced lumen when cytosolic Zn2+ concentrations are elevated. Treatments that increase reactive oxygen species (ROS) trigger TRPM7-dependent Zn2+ release from the vesicles, whereas reduced glutathione prevents TRPM7-dependent cytosolic Zn2+ influx. These observations strongly support the notion that ROS-mediated TRPM7 activation releases Zn2+ from intracellular vesicles after Zn2+ overload. Like the endoplasmic reticulum, these vesicles are a distributed system for divalent cation uptake and release, but in this case the primary divalent ion is Zn2+ rather than Ca2.


Assuntos
Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Vesículas Transportadoras/metabolismo , Zinco/metabolismo , Desenvolvimento Embrionário , Glutationa/metabolismo , Células HEK293 , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
Nature ; 504(7479): 315-8, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24336289

RESUMO

A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.


Assuntos
Canais de Cálcio/metabolismo , Cílios/metabolismo , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Divisão Celular , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
13.
Nature ; 504(7479): 311-4, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24336288

RESUMO

Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only ∼200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Organelas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Células Cultivadas , Citoplasma/metabolismo , Feminino , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
14.
FASEB J ; 31(7): 3167-3178, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28400471

RESUMO

Voltage-gated sodium channels (NaVs) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial NaVs have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial NaVs. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic NaVs NsVBa (nonselective voltage-gated Bacillus alcalophilus) and NaChBac (bacterial sodium channel from Bacillus halodurans) (IC50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of NsVBa, whereas the local anesthetic drug lidocaine was shown to antagonize NsVBa without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of NsVBa, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of NsVBa in one of the deactivated states. In mammalian NaVs, JZTx-27 preferably inhibited the inactivation of NaV1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic NaVs. More important, we proposed that JZTx-27 stabilized the NsVBa VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of NaVs.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.


Assuntos
Bacillus/metabolismo , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fenômenos Eletrofisiológicos , Humanos , Ligação Proteica , Conformação Proteica , Aranhas/fisiologia
15.
Proc Natl Acad Sci U S A ; 111(23): 8428-33, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24850863

RESUMO

Voltage-gated sodium channels are important targets for the development of pharmaceutical drugs, because mutations in different human sodium channel isoforms have causal relationships with a range of neurological and cardiovascular diseases. In this study, functional electrophysiological studies show that the prokaryotic sodium channel from Magnetococcus marinus (NavMs) binds and is inhibited by eukaryotic sodium channel blockers in a manner similar to the human Nav1.1 channel, despite millions of years of divergent evolution between the two types of channels. Crystal complexes of the NavMs pore with several brominated blocker compounds depict a common antagonist binding site in the cavity, adjacent to lipid-facing fenestrations proposed to be the portals for drug entry. In silico docking studies indicate the full extent of the blocker binding site, and electrophysiology studies of NavMs channels with mutations at adjacent residues validate the location. These results suggest that the NavMs channel can be a valuable tool for screening and rational design of human drugs.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canais de Sódio/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Lamotrigina , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Bloqueadores dos Canais de Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/química , Canais de Sódio/genética , Triazinas/metabolismo , Triazinas/farmacologia
16.
Proc Natl Acad Sci U S A ; 110(16): 6364-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23542377

RESUMO

The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel's full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate.


Assuntos
Alphaproteobacteria/metabolismo , Transporte de Íons/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Células HEK293 , Humanos , Ferro/metabolismo , Água/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(2): E93-102, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22160714

RESUMO

Voltage-dependent gating of ion channels is essential for electrical signaling in excitable cells, but the structural basis for voltage sensor function is unknown. We constructed high-resolution structural models of resting, intermediate, and activated states of the voltage-sensing domain of the bacterial sodium channel NaChBac using the Rosetta modeling method, crystal structures of related channels, and experimental data showing state-dependent interactions between the gating charge-carrying arginines in the S4 segment and negatively charged residues in neighboring transmembrane segments. The resulting structural models illustrate a network of ionic and hydrogen-bonding interactions that are made sequentially by the gating charges as they move out under the influence of the electric field. The S4 segment slides 6-8 Å outward through a narrow groove formed by the S1, S2, and S3 segments, rotates ∼30°, and tilts sideways at a pivot point formed by a highly conserved hydrophobic region near the middle of the voltage sensor. The S4 segment has a 3(10)-helical conformation in the narrow inner gating pore, which allows linear movement of the gating charges across the inner one-half of the membrane. Conformational changes of the intracellular one-half of S4 during activation are rigidly coupled to lateral movement of the S4-S5 linker, which could induce movement of the S5 and S6 segments and open the intracellular gate of the pore. We confirmed the validity of these structural models by comparing with a high-resolution structure of a NaChBac homolog and showing predicted molecular interactions of hydrophobic residues in the S4 segment in disulfide-locking studies.


Assuntos
Proteínas de Bactérias/química , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Estrutura Terciária de Proteína , Canais de Sódio/química , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cristalografia , Campos Eletromagnéticos , Eletrofisiologia , Ligação de Hidrogênio , Ativação do Canal Iônico/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Canais de Sódio/genética , Canais de Sódio/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(46): 18825-30, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042870

RESUMO

Voltage-gated Na(+) channels initiate action potentials during electrical signaling in excitable cells. Opening and closing of the pore of voltage-gated ion channels are mechanically linked to voltage-driven outward movement of the positively charged S4 transmembrane segment in their voltage sensors. Disulfide locking of cysteine residues substituted for the outermost T0 and R1 gating-charge positions and a conserved negative charge (E43) at the extracellular end of the S1 segment of the bacterial Na(+) channel NaChBac detects molecular interactions that stabilize the resting state of the voltage sensor and define its conformation. Upon depolarization, the more inward gating charges R2 and R3 engage in these molecular interactions as the S4 segment moves outward to its intermediate and activated states. The R4 gating charge does not disulfide-lock with E43, suggesting an outer limit to its transmembrane movement. These molecular interactions reveal how the S4 gating charges are stabilized in the resting state and how their outward movement is catalyzed by interaction with negatively charged residues to effect pore opening and initiate electrical signaling.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Sódio/química , Linhagem Celular , Cisteína/genética , Dissulfetos/química , Eletroquímica/métodos , Humanos , Íons , Cinética , Mutação , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Sódio/química , Fatores de Tempo
19.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766162

RESUMO

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive states are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation. Traditional channel protein reconstitution methods rely upon exogenous expression and/or purification from endogenous cellular sources which are frequently contaminated by resident ionophores. Here we describe a fully synthetic method to assay the functional properties of the polycystin subfamily of transient receptor potential (TRP) channels that natively traffic to primary cilia and endoplasmic reticulum organelles. Using this method, we characterize their membrane integration, orientation and conductance while comparing these results to their endogenous channel properties. Outcomes define a novel synthetic approach that can be applied broadly to investigate other channels resistant to biophysical analysis and pharmacological characterization.

20.
Proc Natl Acad Sci U S A ; 106(52): 22498-503, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20007787

RESUMO

Electrical signaling in biology depends upon a unique electromechanical transduction process mediated by the S4 segments of voltage-gated ion channels. These transmembrane segments are driven outward by the force of the electric field on positively charged amino acid residues termed "gating charges," which are positioned at three-residue intervals in the S4 transmembrane segment, and this movement is coupled to opening of the pore. Here, we use the disulfide-locking method to demonstrate sequential ion pair formation between the fourth gating charge in the S4 segment (R4) and two acidic residues in the S2 segment during activation. R4 interacts first with E70 at the intracellular end of the S2 segment and then with D60 near the extracellular end. Analysis with the Rosetta Membrane method reveals the 3-D structures of the gating pore as these ion pairs are formed sequentially to catalyze the S4 transmembrane movement required for voltage-dependent activation. Our results directly demonstrate sequential ion pair formation that is an essential feature of the sliding helix model of voltage sensor function but is not compatible with the other widely discussed gating models.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Dissulfetos/química , Fenômenos Eletrofisiológicos , Ativação do Canal Iônico , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Canais de Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA