Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7863): 365-368, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135524

RESUMO

Red supergiants are the most common final evolutionary stage of stars that have initial masses between 8 and 35 times that of the Sun1. During this stage, which lasts roughly 100,000 years1, red supergiants experience substantial mass loss. However, the mechanism for this mass loss is unknown2. Mass loss may affect the evolutionary path, collapse and future supernova light curve3 of a red supergiant, and its ultimate fate as either a neutron star or a black hole4. From November 2019 to March 2020, Betelgeuse-the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away)5,6-experienced a historic dimming of its visible brightness. Usually having an apparent magnitude between 0.1 and 1.0, its visual brightness decreased to 1.614 ± 0.008 magnitudes around 7-13 February 20207-an event referred to as Betelgeuse's Great Dimming. Here we report high-angular-resolution observations showing that the southern hemisphere of Betelgeuse was ten times darker than usual in the visible spectrum during its Great Dimming. Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere. The directly imaged brightness variations of Betelgeuse evolved on a timescale of weeks. Our findings suggest that a component of mass loss from red supergiants8 is inhomogeneous, linked to a very contrasted and rapidly changing photosphere.

2.
Nature ; 490(7418): 74-6, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23038467

RESUMO

Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the ß Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of ß Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though ß Pictoris is more massive and more luminous and has a different planetary system architecture.

3.
Nature ; 467(7311): 64-7, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20811453

RESUMO

The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38125701

RESUMO

Red Supergiant stars (RSGs) are known to eject large amounts of material during this evolutionary phase. However, the processes powering the mass ejection in low- and intermediate-mass stars do not work for RSGs and the mechanism that drives the ejection remains unknown. Different mechanisms have been proposed as responsible for this mass ejection including Alfvén waves, large convective cells, and magnetohydrodynamical (MHD) disturbances at the photosphere, but so far little is known about the actual processes taking place in these objects. Here we present high angular resolution interferometric ALMA maps of VY CMa continuum and molecular emission, which resolve the structure of the ejecta with unprecedented detail. We reconstructed the 3D structure of the gas traced by the different species. It allowed us to study the morphology and kinematics of the gas traced by the different species surrounding VY CMa. Two types of ejecta are clearly observed: extended, irregular, and vast ejecta surrounding the star that are carved by localized fast outflows. The structure of the outflows is found to be particularly flat. We present a 3D reconstruction of these outflows and proof of the carving. This indicates that two different mass loss processes take place in this massive star. We tentatively propose the physical cause for the formation of both types of structures. These results provide essential information on the mass loss processes of RSGs and thus of their further evolution.

5.
Science ; 369(6510): 1497-1500, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943524

RESUMO

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.

6.
Proc Int Astron Union ; 14: 129-133, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31908651

RESUMO

Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO2, SiO, MgO, and Al2O3 clusters.

7.
Astron Astrophys ; 5922016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28065983

RESUMO

CONTEXT: A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. AIMS: To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. METHODS: We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. RESULTS: We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10-8 for ortho-NH3 and [Formula: see text] for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level).

8.
Astrophys J Lett ; 796(1)2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26722620

RESUMO

We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board Herschel and with the IRAM 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA