RESUMO
Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.
Assuntos
Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Feminino , Humanos , Imunomodulação , Camundongos Endogâmicos C57BLRESUMO
Blockade of angiogenesis can retard tumour growth, but may also paradoxically increase metastasis. This paradox may be resolved by vessel normalization, which involves increased pericyte coverage, improved tumour vessel perfusion, reduced vascular permeability, and consequently mitigated hypoxia. Although these processes alter tumour progression, their regulation is poorly understood. Here we show that type 1 T helper (TH1) cells play a crucial role in vessel normalization. Bioinformatic analyses revealed that gene expression features related to vessel normalization correlate with immunostimulatory pathways, especially T lymphocyte infiltration or activity. To delineate the causal relationship, we used various mouse models with vessel normalization or T lymphocyte deficiencies. Although disruption of vessel normalization reduced T lymphocyte infiltration as expected, reciprocal depletion or inactivation of CD4+ T lymphocytes decreased vessel normalization, indicating a mutually regulatory loop. In addition, activation of CD4+ T lymphocytes by immune checkpoint blockade increased vessel normalization. TH1 cells that secrete interferon-γ are a major population of cells associated with vessel normalization. Patient-derived xenograft tumours growing in immunodeficient mice exhibited enhanced hypoxia compared to the original tumours in immunocompetent humans, and hypoxia was reduced by adoptive TH1 transfer. Our findings elucidate an unexpected role of TH1 cells in vasculature and immune reprogramming. TH1 cells may be a marker and a determinant of both immune checkpoint blockade and anti-angiogenesis efficacy.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Neovascularização Fisiológica/imunologia , Neovascularização Fisiológica/fisiologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/transplante , Permeabilidade Capilar , Hipóxia Celular/fisiologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , Feminino , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neovascularização Patológica/patologia , Pericitos/citologia , Pericitos/fisiologia , Prognóstico , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/transplante , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.
Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Celular/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos/fisiologia , Aminoacil-tRNA Sintetases/imunologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th1/imunologiaRESUMO
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8+ gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8+ IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cardiomiopatia Chagásica/terapia , Imunoterapia/métodos , Vacinas/imunologia , Adenoviridae/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Cardiomiopatia Chagásica/prevenção & controle , Células Dendríticas/imunologia , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Transdução Genética , Resultado do Tratamento , Vacinas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologiaRESUMO
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Assuntos
Carcinogênese/imunologia , Evasão da Resposta Imune , Neoplasias/imunologia , Neoplasias/terapia , Apresentação de Antígeno/imunologia , Carcinogênese/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Neoplasias/patologia , Compostos Fitoquímicos/uso terapêutico , Linfócitos T Reguladores/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologiaRESUMO
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.
Assuntos
Heterogeneidade Genética , Terapia de Alvo Molecular , Neoplasias/terapia , Medicina de Precisão , Antineoplásicos Fitogênicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/prevenção & controle , Transdução de Sinais , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Cancer patients can exhibit negligible responses to prophylactic vaccinations, including influenza vaccination. To help address this issue, we developed in vitro and in vivo models of dendritic cell (DC) immunotherapy for the prevention of influenza virus infection. METHODS: Human cord blood (CB)-derived or mouse splenocyte-derived DCs were loaded with purified recombinant hemagglutinin (rHA). T-cell responses to HA-loaded CB-derived DCs were determined by ELISpot. Protective efficacy was determined by vaccination of BALB/c mice with a single injection of 10(6) autologous DCs. DC migration to peripheral lymphoid organs was verified by carboxyfluorescein succinimidyl ester staining, and HA-specific antibody titers were determined by enzyme-linked immunosorbent assay. Mice were then challenged intranasally with BALB/c-adapted A/New Caledonia influenza virus derived from four consecutive lung pool passages. Antigen-presenting cell (APC) dysfunction was modeled using the MAFIA transgenic system, in which the Csf1r promoter conditionally drives AP20178-inducible Fas. RESULTS: CB-derived human DCs were able to generate de novo T-cell responses against rHA, as determined by a system of rigorous controls. Mice vaccinated intraperitoneally developed HA titers detectable at serum dilutions of >1:1000. HA seroconverters survived virus challenge, whereas unvaccinated controls and vaccinated nonseroconverters lost weight and died. Furthermore, use of a model of APC-specific immunosuppression revealed that DC vaccination could generate HA-specific antibody titers under conditions in which protein vaccination could not. CONCLUSIONS: The model demonstrates that DC immunotherapy for the prevention of influenza is feasible, and studies are underway to determine whether populations of immunosuppressed individuals might ultimately benefit from the procedure.
Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoterapia/métodos , Vírus da Influenza A/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , ELISPOT , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologiaRESUMO
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Assuntos
Aminoacil-tRNA Sintetases , Homeostase , Homeostase/imunologia , Animais , Humanos , Aminoacil-tRNA Sintetases/imunologia , Aminoacil-tRNA Sintetases/metabolismo , ImunomodulaçãoRESUMO
BACKGROUND/OBJECTIVES: Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4. SUBJECTS/METHODS: In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to identify those targeting CTLA-4. We validated the hits molecules with biochemical, biophysical, immunological, and experimental animal assays. RESULTS: The primary hits obtained from the virtual screening were successfully validated in vitro and in vivo. We then optimized lead compounds and obtained inhibitors (inhibitory concentration, 1 micromole) that disrupted the CTLA-4/CD80 interaction without degrading CTLA-4. CONCLUSIONS: Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. Our findings support using AI-based frameworks to design small molecules targeting immune checkpoints for cancer therapy.
RESUMO
Introduction: Hookworms are parasitic helminths that secrete a variety of proteins that induce anti-inflammatory immune responses, stimulating increased CD4 + Foxp3+ regulatory T cells and IL-10 production. Hookworm-derived recombinant proteins AIP-1 and AIP-2 have been shown to reduce inflammation in mouse models of inflammatory bowel disease and inflammatory airway disease by inducing CD4+Foxp3+ cells and IL-10 production. In contrast, chronic infection with the protozoal parasite Trypanosoma cruzi, the causative agent of Chagas disease, leads to chronic inflammation in tissues. Persistence of the parasites in tissues drives chronic low-grade inflammation, with increased infiltration of inflammatory cells into the heart, accompanied by increased production of inflammatory cytokines. There are no current antiparasitic drugs that effectively reduce or prevent chronic myocarditis caused by the onset of Chagas disease, thus new therapies are urgently needed. Therefore, the impact of AIP-1 and AIP-2 on myocarditis was investigated in a mouse model of chronic T. cruzi infection. Methods: Female BALB/c mice infected with bioluminescent T. cruzi H1 strain trypomastigotes for 70 days were treated once daily for 7 days with 1mg/kg AIP-1 or AIP-2 protein by intraperitoneal injection. Control mice were left untreated or treated once daily for 14 days with 25mg/kg aspirin in drinking water. At 84 days of infection, splenocytes, cardiac tissue and serum were collected for evaluation. Results: Treatment with both AIP-1 and AIP-2 proteins significantly reduced cardiac cellular infiltration, and reduced cardiac levels of IFNγ, IL-6 and IL-2. AIP-2 treatment reduced cardiac expression of COX-2. Further, while incubation with AIP-1 and AIP-2 proteins did not induce a significant upregulation of an immunoregulatory phenotype in dendritic cells (DC), there was a modest upregulation of CD11c +CD11b+MHCII+SIRPα+ expression, suggesting a regulatory phenotype. Ex-vivo stimulation of splenocytes from the treatment groups with AIP-1 loaded DC induced reduced levels of cytotoxic and pro-inflammatory T cells, stimulation with AIP-2 loaded DC specifically induced enhanced levels of CD4+CD25+Foxp3+ regulatory T cells among treatment groups. Discussion: All in vivo and in vitro results demonstrate that hookworm-derived AIP-1 and AIP-2 proteins reduce T. cruzi induced cardiac inflammation, possibly through multiple anti-inflammatory mechanisms.
RESUMO
BACKGROUND: The existence of immunologically 'cold tumors' frequently found across a wide spectrum of tumor types represents a significant challenge for cancer immunotherapy. Cold tumors have poor baseline pan-leukocyte infiltration, including a low prevalence of cytotoxic lymphocytes, and not surprisingly respond unfavorably to immune checkpoint (IC) inhibitors. We hypothesized that cold tumors harbor a mechanism of immune escape upstream and independent of ICs that may be driven by tumor biology rather than differences in mutational neoantigen burden. METHODS: Using a bioinformatic approach to analyze TCGA (The Cancer Genome Atlas) RNA sequencing data we identified genes upregulated in cold versus hot tumors across four different smoking-related cancers, including squamous carcinomas from the oral cavity (OCSCC) and lung (LUSC), and adenocarcinomas of the bladder (BLCA) and lung (LUAD). Biological significance of the gene most robustly associated with a cold tumor phenotype across all four tumor types, glutathione peroxidase 2 (GPX2), was further evaluated using a combination of in silico analyses and functional genomic experiments performed both in vitro and in in vivo with preclinical models of oral cancer. RESULTS: Elevated RNA expression of five metabolic enzymes including GPX2, aldo-keto reductase family 1 members AKR1C1, AKR1C3, and cytochrome monoxygenases (CP4F11 and CYP4F3) co-occurred in cold tumors across all four smoking-related cancers. These genes have all been linked to negative regulation of arachidonic acid metabolism-a well-established inflammatory pathway-and are also known downstream targets of the redox sensitive Nrf2 transcription factor pathway. In OCSCC, LUSC, and LUAD, GPX2 expression was highly correlated with Nrf2 activation signatures, also elevated in cold tumors. In BLCA, however, GPX2 correlated more strongly than Nrf2 signatures with decreased infiltration of multiple leukocyte subtypes. GPX2 inversely correlated with expression of multiple pro- inflammatory cytokines/chemokines and NF-kB activation in cell lines and knockdown of GPX2 led to increased secretion of prostaglandin E2 (PGE2) and interleukin-6. Conversely, GPX2 overexpression led to reduced PGE2 production in a murine OCSCC model (MOC1). GPX2 overexpressing MOC1 tumors had a more suppressive tumor immune microenvironment and responded less favorably to anti-cytotoxic T-lymphocytes-associated protein 4 IC therapy in mice. CONCLUSION: GPX2 overexpression represents a novel potentially targetable effector of immune escape in cold tumors.
Assuntos
Glutationa Peroxidase/metabolismo , Inibidores de Checkpoint Imunológico , Fator 2 Relacionado a NF-E2 , Animais , Dinoprostona , Glutationa Peroxidase/genética , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Microambiente TumoralRESUMO
In the control of T-helper type I (Th-1) polarization, dendritic cells (DCs) must interpret a complex array of stimuli, many of which are poorly understood. Here we demonstrate that Th-1 polarization is heavily influenced by DC-autonomous phenomena triggered by the loading of DCs with antigenically matched major histocompatibility complex (MHC) class I and class II determinants, that is, class I and II peptide epitopes exhibiting significant amino acid sequence overlap (such as would be physiologically present during infectious processes requiring Th-1 immunity for clearance). Data were derived from 13 independent antigenic models including whole-cell systems, single-protein systems, and 3 different pairs of overlapping class I and II binding epitopes. Once loaded with matched class I and II antigens, these "Th-1 DCs" exhibited differential cytokine secretion and surface marker expression, a distinct transcriptional signature, and acquired the ability to enhance generation of CD8(+) T lymphocytes. Mechanistically, tRNA-synthetases were implicated as components of a putative sensor complex involved in the comparison of class I and II epitopes. These data provide rigorous conceptual explanations for the process of Th-1 polarization and the antigenic specificity of cognate T-cell help, enhance the understanding of Th-1 responses, and should contribute to the formulation of more effective vaccination strategies.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Células Th1/imunologia , Aminoacil-tRNA Sintetases/metabolismo , Apresentação de Antígeno , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imunoglobulinas/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Glicoproteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células Th1/citologia , Células Th1/metabolismo , Antígeno CD83RESUMO
In humans, the natural killer (NK) cell marker CD161 identifies several subsets of T cells, including a polyclonal CD8 αß T cell receptor-expressing subset with characteristic specificity for tissue-localized viruses. This subset also displays enhanced cytotoxic and memory phenotypes. Here, we characterized this unique T cell subset and determined its potential suitability for use in chimeric antigen receptor (CAR) T cell therapy. In mice, gene expression profiling among the CD161-equivalent CD8+ T cell populations (CD8+NK1.1+) revealed substantial up-regulation of granzymes, perforin, killer lectin-like receptors, and innate signaling molecules in comparison to CD8+NK1.1- T cells. Adoptive transfer of CD8+NK1.1+ cells from previously exposed animals offered substantially enhanced protection and improved survival against melanoma tumors and influenza infection compared to CD8+NK1.1- cells. Freshly isolated human CD8+CD61+ T cells exhibited heightened allogeneic killing activity in comparison to CD8+CD61- T cells or total peripheral blood mononuclear cells (PBMCs). To determine whether this subset might improve the antitumor efficacy of CAR T cell therapy against solid tumors, we compared bulk PBMCs, CD8+CD161-, and CD8+CD161+ T cells transduced with a human epidermal growth factor receptor-2 (HER2)-specific CAR construct. In vitro, CD8+CD161+ CAR-transduced T cells killed HER2+ targets faster and with greater efficiency. Similarly, these cells mediated enhanced in vivo antitumor efficacy in xenograft models of HER2+ pancreatic ductal adenocarcinoma, exhibiting elevated expression of granzymes and reduced expression of exhaustion markers. These data suggest that this T cell subset presents an opportunity to improve CAR T cell therapy for the treatment of solid tumors.
Assuntos
Adenocarcinoma , Memória Imunológica , Animais , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Camundongos , Subpopulações de Linfócitos TRESUMO
BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.
Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Vacinas Anticâncer/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
The use of umbilical cord blood (UCB) grafts for hematopoietic stem cell transplantation (HSCT) is a promising technique that permits a degree of human leukocyte antigen mismatch between the graft and the host without the concomitant higher rate of graft-versus-host disease that would be observed between an adult marrow graft and a mismatched host. A disadvantage to the use of UCB for HSCT is that immune reconstitution may be significantly delayed because of the low stem cell dose available in the graft. Ex vivo expansion of UCB CD34 cells would provide a greater number of stem cells; however, there are persistent concerns that ex vivo-expanded CD34 cells may lose pluripotency and the ability to contribute meaningfully to long-term engraftment. To address this issue, we transduced CD34-selected UCB cells with a lentiviral construct expressing luciferase, and determined homing and engraftment patterns in vivo by noninvasive bioluminescent imaging in sublethally irradiated NOD/SCID/IL-2Rgamma(-/-) (NSG) mice. Graft contribution to multilineage commitment was also confirmed by analysis of primary and secondary transplants by flow cytometry and immunohistochemistry. Our results demonstrate that, other than a mild delay at the onset of engraftment, there were no significant differences in lineage repopulation or in long-term or secondary engraftment between culture-expanded and unexpanded UCB CD34-selected cells. The results suggest that multipotent stem cells can be expanded ex vivo and can contribute meaningfully to long-term hematopoietic engraftment.
Assuntos
Antígenos CD34/análise , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Animais , Linhagem da Célula , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Luciferases de Vaga-Lume/química , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução GenéticaRESUMO
NK1.1 and its human homolog CD161 are expressed on NK cells, subsets of CD4+ and CD8+ T cells, and NKT cells. While the expression of NK1.1 is thought to be inhibitory to NK cell function, it is reported to play both costimulatory and coinhibitory roles in T-cells. CD161 has been extensively studied and characterized on subsets of T-cells that are MR1-restricted, IL-17 producing CD4+ (TH17 MAIT cells) and CD8+ T cells (Tc17 cells). Non-MAIT, MR1-independent CD161-expressing T-cells also exist and are characterized as generally effector memory cells with a stem cell like phenotype. Gene expression analysis of this enigmatic subset indicates a significant enhancement in the expression of cytotoxic granzyme molecules and innate like stress receptors in CD8+NK1.1+/CD8+CD161+ cells in comparison to CD8+ cells that do not express NK1.1 or CD161. First identified and studied in the context of viral infection, the role of CD8+CD161+ T-cells, especially in the context of tumor immunology, is still poorly understood. In this review, the functional characteristics of the CD161-expressing CD8+ T cell subset with respect to gene expression profile, cytotoxicity, and tissue homing properties are discussed, and application of this subset to immune responses against infectious disease and cancer is considered.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Receptores de IgG/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Células Matadoras Naturais/imunologiaRESUMO
The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4-/- mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.
Assuntos
Antígeno CTLA-4/metabolismo , Sistema Imunitário/metabolismo , Linfócitos T/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Antígeno CTLA-4/genética , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Linfócitos T/imunologiaRESUMO
ABSTRACT: Over the last 2 decades, affirmative diagnoses of osteoarthritis (OA) in the United States have tripled due to increasing rates of obesity and an aging population. Hemp-derived cannabidiol (CBD) is the major nontetrahydrocannabinol component of cannabis and has been promoted as a potential treatment for a wide variety of disparate inflammatory conditions. Here, we evaluated CBD for its ability to modulate the production of proinflammatory cytokines in vitro and in murine models of induced inflammation and further validated the ability of a liposomal formulation to increase bioavailability in mice and in humans. Subsequently, the therapeutic potential of both naked and liposomally encapsulated CBD was explored in a 4-week, randomized placebo-controlled, double-blinded study in a spontaneous canine model of OA. In vitro and in mouse models, CBD significantly attenuated the production of proinflammatory cytokines IL-6 and TNF-α while elevating levels of anti-inflammatory IL-10. In the veterinary study, CBD significantly decreased pain and increased mobility in a dose-dependent fashion among animals with an affirmative diagnosis of OA. Liposomal CBD (20 mg/day) was as effective as the highest dose of nonliposomal CBD (50 mg/day) in improving clinical outcomes. Hematocrit, comprehensive metabolic profile, and clinical chemistry indicated no significant detrimental impact of CBD administration over the 4-week analysis period. This study supports the safety and therapeutic potential of hemp-derived CBD for relieving arthritic pain and suggests follow-up investigations in humans are warranted.
Assuntos
Canabidiol , Cannabis , Osteoartrite , Animais , Canabidiol/uso terapêutico , Cães , Método Duplo-Cego , Camundongos , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , DorRESUMO
The goal of harnessing the immune system to effectively eradicate neoplastic disease will require the generation of robust Th-1 type immunity and durable immunological memory against the antigenic repertoire that differentiates normal self from neoplastic self. While the literature presents a very mixed picture as to the requirement of T-cell help for the generation of both primary and memory CTL responses, there appears to be a general consensus that CD4(+) T-cell help will be required to generate durable responses against self cancer antigens that are devoid of foreign PAMPs and for which high-affinity T-cell clones have been deleted as a consequence of thymic selection. Here we comment briefly upon the characterization of an emerging regulatory pathway that enhances Th-1 polarization and CD8(+) CTL responses by a mechanism dependent upon CD40L-mediated T-cell help. Further, we speculate that the full elucidation of this mechanism might be generally useful in answering some unresolved questions regarding the initiation of Th-1 polarized responses.
Assuntos
Polaridade Celular/imunologia , Células Dendríticas/imunologia , Células Th1/fisiologia , Animais , Ligante de CD40 , Humanos , Imunoterapia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , VacinaçãoRESUMO
At the turn of the last century, the emerging field of medical oncology chose a cytotoxic approach to cancer therapy over an immune-centered approach at a time when evidence in support of either paradigm did not yet exist. Today, nearly 120 years of data have established that (a) even the best cytotoxic regimens only infrequently cure late-stage malignancy and (b) strategies that supplement and augment existing antitumor immune responses offer the greatest opportunities to potentiate durable remission in cancer. Despite widespread acceptance of these paradigms today, the ability of the immune system to recognize and fight cancer was a highly controversial topic for much of the twentieth century. Why this modern paradigmatic mainstay should have been both dubious and controversial for such an extended period is a topic of considerable interest that merits candid discussion. Herein, we review the literature to identify and describe the watershed events that ultimately led to the acceptance of immunotherapy as a viable regimen for the treatment of neoplastic malignancy. In addition to noting important clinical discoveries, we also focus on research milestones and the development of critical model systems in rodents and dogs including the advanced modeling techniques that allowed development of patient-derived xenografts. Together, their use will further our understanding of cancer biology and tumor immunology, allow for a speedier assessment of the efficacy and safety of novel approaches, and ultimately provide a faster bench to beside transition.