Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
3.
Semin Cell Dev Biol ; 156: 1-10, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977107

RESUMO

The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Plasticidade Celular , Neoplasias/patologia , Apoptose , Morte Celular
4.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757207

RESUMO

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Quinase 1 de Adesão Focal/metabolismo , Melanoma/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/genética , Humanos , Integrina alfa2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma/enzimologia , Melanoma/patologia , Camundongos Nus , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gastroenterology ; 157(3): 823-837, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078621

RESUMO

BACKGROUND & AIMS: Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. METHODS: We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. RESULTS: Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. CONCLUSIONS: In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer.


Assuntos
Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral , Animais , Antígenos de Neoplasias/genética , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/genética , Inibidores da Anidrase Carbônica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Glicólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Compostos de Fenilureia/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
FASEB J ; 28(8): 3645-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24784577

RESUMO

One of the clinical alterations observed in chronic renal disease (CRD) is the impaired urine concentration, known as diabetes insipidus (DI). Tubulointerstitial fibrosis of the kidney is also a pathological finding observed in CRD and involves composition of extracellular matrix (ECM). However, an association between these two events has not been elucidated. In this study, we showed that the extracellular-to-intracellular scaffold protein integrin-linked kinase (ILK) regulates expression of tubular water channel aquaporin-2 (AQP2) and its apical membrane presence in the renal tubule. Basally, polyuria and decreased urine osmolality were present in ILK conditional-knockdown (cKD-ILK) adult mice compared with nondepleted ILK littermates. No changes were observed in arginine-vasopressin (AVP) blood levels, renal receptor (V2R), or AQP3 expression. However, tubular AQP2 was decreased in expression and apical membrane presence in cKD-ILK mice, where the canonical V2R/cAMP axis activation is still functional, but independent of the absence of ILK. Thus, cKD-ILK constitutes a nephrogenic diabetes insipidus (NDI) model. AQP2 and ILK colocalize in cultured inner medullary collecting duct (mIMCD3) cells. Specific ILK siRNAs and collagen I (Col) decrease ILK and AQP2 levels and AQP2 presence on the membrane of tubular mIMCD3 cells, which impairs the capacity of the cells to transport water under hypotonic stress. The present work points to ILK as a therapeutic target in NDI.


Assuntos
Aquaporina 2/fisiologia , Água Corporal/metabolismo , Proteínas da Matriz Extracelular/fisiologia , Capacidade de Concentração Renal/fisiologia , Túbulos Renais Coletores/metabolismo , Poliúria/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Aquaporina 2/biossíntese , Aquaporina 2/genética , Aquaporina 3/biossíntese , Aquaporina 3/genética , Arginina Vasopressina/sangue , Transporte Biológico Ativo , Membrana Celular/química , Polaridade Celular , Células Cultivadas , Colágeno Tipo I/farmacologia , Desamino Arginina Vasopressina/farmacologia , Diabetes Insípido Nefrogênico/metabolismo , Modelos Animais de Doenças , Túbulos Renais Coletores/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Concentração Osmolar , Pressão Osmótica/fisiologia , Fosforilação , Poliúria/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores de Vasopressinas/biossíntese , Receptores de Vasopressinas/genética
8.
EMBO Rep ; 14(9): 837-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23877428

RESUMO

Here we report that ILK localizes in the mouse primary cilium, a sensory organelle required for signalling by the Hedgehog (Hh) pathway. Genetic or pharmacological inhibition of ILK blocks ciliary accumulation of the Hh pathway effector smoothened (Smo) and suppresses the induction of Gli transcription factor mRNAs by SHh. Conditional deletion of ILK or Smo also inhibits SHh-driven activation of Gli2 in the embryonic mouse cerebellum. ILK regulation of Hh signalling probably requires the physical interaction of ILK and Smo in the cilium, and we also show selective cilia-associated interaction of ILK with ß-arrestin, a known mediator of Smo-dependent signalling.


Assuntos
Cerebelo/metabolismo , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Arrestinas/metabolismo , Linhagem Celular , Cerebelo/embriologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Proteína Gli2 com Dedos de Zinco
9.
Subcell Biochem ; 75: 255-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24146383

RESUMO

The development of hypoxic microenvironments within many types of solid tumors imposes a significant stress on cancer cells to which they must respond appropriately in order to survive and grow. Tumor-specific, hypoxia-induced upregulation of Carbonic Anhydrase IX (CAIX) is a component of the complex response of cancer cells to the evolving low oxygen environment. Here, we discuss evidence from in vivo tumor models employing inhibition or enhancement of CAIX expression, using gene depletion or overexpression strategies, respectively, or inhibition of its catalytic activity, using CAIX-specific small molecules or antibodies, to demonstrate that CAIX is a functional mediator of tumor growth and metastasis. We also discuss the functional contribution of CAIX to several specific biological processes critical for cancer progression, including pH regulation and cell survival, adhesion, migration and invasion, the maintenance of cancer stem cell function, and the acquisition of chemo and radioresistant properties. The demonstration of CAIX as a functional mediator of cancer progression provides a biological rationale for its use as a cancer-specific, clinically relevant therapeutic target.


Assuntos
Antígenos de Neoplasias/genética , Anidrases Carbônicas/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Antígenos de Neoplasias/metabolismo , Dióxido de Carbono/metabolismo , Anidrase Carbônica IX , Anidrases Carbônicas/metabolismo , Carcinogênese/genética , Hipóxia Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Estresse Fisiológico/genética
10.
Exp Eye Res ; 121: 130-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24472646

RESUMO

While the role of growth factors in lens development has been investigated extensively, the role of extracellular matrix signalling is less well understood. The developing lens expresses predominantly laminin-binding integrins (such as α3ß1, α6ß1), which are cooperatively required in the lens epithelium during development. We investigated the role of ILK, a downstream mediator of integrin signalling in mice conditionally null for Ilk. Mutant lenses showed epithelial thinning at E17.5 with reduced proliferation and epithelial cell number and aberrant fibre differentiation. There was complete loss of the central epithelium from postnatal day (P) 2 due to cell death followed by fibre cell degeneration and death by P10 as well as rupture of the lens capsule between P10 and P21. At E17.5 there was significant inhibition (∼50%) of epithelial cell cycle progression, as shown by BrdU incorporation, cyclin D1/D2 and phospho-histone H3 immunostaining. The epithelial marker, E-cadherin, was decreased progressively from E17.5 to P2, in the central epithelium, but there was no significant change in Pax6 expression. Analyses of ERK and Akt phosphorylation indicated marked depression of MAPK and PI3K-Akt signalling, which correlated with decreased phosphorylation of FRS2α and Shp2, indicating altered activation of FGF receptors. At later postnatal stages there was reduced or delayed expression of fibre cell markers (ß-crystallin and p57(kip2)). Loss of Ilk also affected deposition of extracellular matrix, with marked retention of collagen IV within differentiating fibre cells. By quantitative RT-PCR array there was significantly decreased expression of 19 genes associated with focal adhesions, actin filament stability and MAPK and PI3K/Akt signalling. Overall, these data indicate that ILK is required for complete activation of signalling cascades downstream of the FGF receptor in lens epithelium and fibre cells during development and thus is involved in epithelial proliferation, survival and subsequent fibre differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Epiteliais/citologia , Cristalino/embriologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Western Blotting , Caderinas/metabolismo , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Nat Rev Cancer ; 5(1): 51-63, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15630415

RESUMO

Cancer development requires the acquisition of several capabilities that include increased replicative potential, anchorage and growth-factor independence, evasion of apoptosis, angiogenesis, invasion of surrounding tissues and metastasis. One protein that has emerged as promoting many of these phenotypes when dysregulated is integrin-linked kinase (ILK), a unique intracellular adaptor and kinase that links the cell-adhesion receptors, integrins and growth factors to the actin cytoskeleton and to a range of signalling pathways. The recent findings of increased levels of ILK in various cancers, and that inhibition of ILK expression and activity is antitumorigenic, makes ILK an attractive target for cancer therapeutics.


Assuntos
Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Fosforilação
12.
J Enzyme Inhib Med Chem ; 29(2): 249-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23463940

RESUMO

Two carbonic anhydrase IX (CA IX) inhibitors were radiolabeled with (18)F, and evaluated for imaging CA IX expression. Despite good affinity for CA IX and excellent plasma stability, uptake of both tracers in CA IX-expressing HT-29 tumor xenografts in mice was low. (18)F-FEC accumulated predominately in the liver and nasal cavity, whereas a significant amount of (18)F-U-104 was retained in blood. Due to minimal uptake in HT-29 tumors compared to other organs/tissues, these two tracers are not suitable for use for CA IX-targeted imaging.


Assuntos
Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adenocarcinoma/diagnóstico por imagem , Animais , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacocinética , Inibidores da Anidrase Carbônica/farmacologia , Estabilidade de Medicamentos , Radioisótopos de Flúor , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estrutura Molecular , Compostos Radiofarmacêuticos , Receptores de Interleucina-2/genética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Circ Res ; 109(6): 616-28, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21778429

RESUMO

RATIONALE: Integrin-linked kinase (ILK) is located at focal adhesions and links the extracellular matrix (ECM) to the actin cytoskeleton via ß1- and ß3-integrins. ILK plays a role in the activation of kinases including protein kinase B/Akt and glycogen synthase kinase 3ß and regulates cell proliferation, motility, and survival. OBJECTIVE: To determine the function of ILK in vascular smooth muscle cells (SMCs) in vivo. METHODS AND RESULTS: SM22Cre(+)Ilk(Fl/Fl) conditional mutant mice were generated in which the Ilk gene was selectively ablated in SMCs. SM22Cre(+)Ilk(Fl/Fl) conditional mutant mice survive to birth but die in the perinatal period exhibiting multiple vascular pathologies including aneurysmal dilatation of the aorta and patent ductus arteriosus (PDA). Defects in morphogenetic development of the aorta were observed as early as E12.5 in SM22Cre(+)Ilk(Fl/Fl) mutant embryos. By late gestation (E16.5 to 18.5), striking expansion of the thoracic aorta was observed in ILK mutant embryos. Histological analyses revealed that the structural organization of the arterial tunica media is severely disrupted with profound derangements in SMC morphology, cell-cell, and cell-matrix relationships, including disruption of the elastic lamellae. ILK deletion in primary aortic SMCs results in alterations of RhoA/cytoskeletal signaling transduced through aberrant localization of myocardin-related transcription factor (MRTF)-A repressing the transcription and expression of SMC genes, which are required for the maintenance of the contractile SMC phenotype. CONCLUSIONS: These data identify a molecular pathway linking ILK signaling to the contractile SMC gene program. Activation of this pathway is required for morphogenetic development of the aorta and ductus arteriosus during embryonic and postnatal survival.


Assuntos
Aneurisma Aórtico/enzimologia , Deleção de Genes , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Animais , Aneurisma Aórtico/patologia , Células Cultivadas , Feminino , Marcação de Genes/métodos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/embriologia , Miócitos de Músculo Liso/citologia , Gravidez
14.
Exp Cell Res ; 318(19): 2470-81, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22971619

RESUMO

Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cicatrização/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Cicatrização/genética
15.
Front Mol Biosci ; 10: 1327310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099193

RESUMO

The tumour-associated carbonic anhydrases (CA) IX and XII are upregulated by cancer cells to combat cellular and metabolic stress imparted by hypoxia and acidosis in solid tumours. Owing to its tumour-specific expression and function, CAIX is an attractive therapeutic target and this has driven intense efforts to develop pharmacologic agents to target its activity, including small molecule inhibitors. Many studies in multiple solid tumour models have demonstrated that targeting CAIX activity with the selective CAIX/XII inhibitor, SLC-0111, results in anti-tumour efficacy, particularly when used in combination with chemotherapy or immune checkpoint blockade, and has now advanced to the clinic. However, it has been observed that sustainability and durability of CAIX inhibition, even in combination with chemotherapy agents, is limited by the occurrence of adaptive resistance, resulting in tumour recurrence. Importantly, the data from these models demonstrates that CAIX inhibition may sensitize tumour cells to cytotoxic drugs and evidence now points to ferroptosis, an iron-dependent form of regulated cell death (RCD) that results from accumulation of toxic levels of phospholipid peroxidation as a major mechanism involved in CAIX-mediated sensitization to cancer therapy. In this mini-review, we discuss recent advances demonstrating the mechanistic role CAIX plays in sensitizing cancer cells to ferroptosis.

16.
Mol Cancer Ther ; 22(10): 1228-1242, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37348875

RESUMO

The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.


Assuntos
Anidrases Carbônicas , Ferroptose , Humanos , Anidrase Carbônica IX/metabolismo , Glutamina , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Hipóxia , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
17.
Carcinogenesis ; 33(12): 2558-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027626

RESUMO

Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.


Assuntos
Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Transativadores/fisiologia , Animais , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Masculino , Camundongos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia , Regulador Transcricional ERG
18.
Int J Cancer ; 130(3): 521-31, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21351095

RESUMO

It is important to understand the molecular mechanisms of bladder cancer progression not only to prevent cancer progression but also to detect new therapeutic targets against advanced bladder cancer. The integrin-linked kinase (ILK) is a major signaling integrator in mammalian cells and plays an important role in epithelial-mesenchymal transition (EMT) of human cancers, but its mechanisms are not completely understood. In this study, we investigated the importance and mechanisms of ILK in bladder cancer progression. When the expression of ILK in bladder cancer cell lines and N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced murine bladder cancer was evaluated, ILK has a tendency to be overexpressed in invasive cell lines and invasive BBN-induced murine bladder cancer. Overexpression of ILK in 253J bladder cancer cells suppressed E-cadherin expression, resulting in the promotion of cell invasion. Conversely, ILK knockdown by siRNA suppresses cell invasion in invasive bladder cancer cells through the regulation of E-cadherin or matrix metalloprotease 9 (MMP-9). To regulate E-cadherin expression, our results showed that the glycogen synthase kinase 3ß (GSK3ß)-Zeb1 pathway may play an important role downstream of ILK. Finally, the results of a human bladder tissue microarray (TMA) showed that ILK expression correlates with the invasiveness of human bladder cancer. Our study suggests that ILK is overexpressed in invasive bladder cancer and plays an important role in the EMT of bladder cancer via the control of E-cadherin and MMP-9 expression. ILK may be a new molecular target to suppress tumor progression in advanced and high-risk bladder cancer patients.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias da Bexiga Urinária/genética
19.
Cancer Cell ; 5(1): 79-90, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14749128

RESUMO

We show that integrin-linked kinase (ILK) stimulates the expression of VEGF by stimulating HIF-1alpha protein expression in a PKB/Akt- and mTOR/FRAP-dependent manner. In human prostate cancer cells, knockdown of ILK expression with siRNA, or inhibition of ILK activity, results in significant inhibition of HIF-1alpha and VEGF expression. In endothelial cells, VEGF stimulates ILK activity, and inhibition of ILK expression or activity results in the inhibition of VEGF-mediated endothelial cell migration, capillary formation in vitro, and angiogenesis in vivo. Inhibition of ILK activity also inhibits prostate tumor angiogenesis and suppresses tumor growth. These data demonstrate an important and essential role of ILK in two key aspects of tumor angiogenesis: VEGF expression by tumor cells and VEGF-stimulated blood vessel formation.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Movimento Celular/fisiologia , Embrião de Galinha , Inibidores Enzimáticos/farmacologia , Proteínas de Peixes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , PTEN Fosfo-Hidrolase , Proteínas Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Células Tumorais Cultivadas
20.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804980

RESUMO

Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA