Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 20(1): 323, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33096982

RESUMO

BACKGROUND: The production of methane by methanogens is dependent on numerous iron-sulfur (Fe-S) cluster proteins; yet, the machinery involved in Fe-S cluster biogenesis in methanogens remains largely unknown. Methanogen genomes encode uncharacterized homologs of the core components of the ISC (IscS and IscU) and SUF (SufBC) Fe-S cluster biogenesis systems found in bacteria and eukaryotes. Methanosarcina acetivorans contains three iscSU and two sufCB gene clusters. Here, we report genetic and biochemical characterization of M. acetivorans iscSU2. RESULTS: Purified IscS2 exhibited pyridoxal 5'- phosphate-dependent release of sulfur from L-cysteine. Incubation of purified IscU2 with IscS2, cysteine, and iron (Fe2+) resulted in the formation of [4Fe-4S] clusters in IscU2. IscU2 transferred a [4Fe-4S] cluster to purified M. acetivorans apo-aconitase. IscU2 also restored the aconitase activity in air-exposed M. acetivorans cell lysate. These biochemical results demonstrate that IscS2 is a cysteine desulfurase and that IscU2 is a Fe-S cluster scaffold. M. acetivorans strain DJL60 deleted of iscSU2 was generated to ascertain the in vivo importance of IscSU2. Strain DJL60 had Fe-S cluster content and growth similar to the parent strain but lower cysteine desulfurase activity. Strain DJL60 also had lower intracellular persulfide content compared to the parent strain when cysteine was an exogenous sulfur source, linking IscSU2 to sulfur metabolism. CONCLUSIONS: This study establishes that M. acetivorans contains functional IscS and IscU, the core components of the ISC Fe-S cluster biogenesis system and provides the first evidence that ISC operates in methanogens.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Methanosarcina/genética , Liases de Carbono-Enxofre/genética , Cisteína/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Methanosarcina/enzimologia , Enxofre/metabolismo
2.
Sci Rep ; 13(1): 15120, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704679

RESUMO

Iron-sulfur (Fe-S) proteins are essential for the ability of methanogens to carry out methanogenesis and biological nitrogen fixation (diazotrophy). Nonetheless, the factors involved in Fe-S cluster biogenesis in methanogens remain largely unknown. The minimal SUF Fe-S cluster biogenesis system (i.e., SufBC) is postulated to serve as the primary system in methanogens. Here, the role of SufBC in Methanosarcina acetivorans, which contains two sufCB gene clusters, was investigated. The CRISPRi-dCas9 and CRISPR-Cas9 systems were utilized to repress or delete sufC1B1 and sufC2B2, respectively. Neither the dual repression of sufC1B1 and sufC2B2 nor the deletion of both sufC1B1 and sufC2B2 affected the growth of M. acetivorans under any conditions tested, including diazotrophy. Interestingly, deletion of only sufC1B1 led to a delayed-growth phenotype under all growth conditions, suggesting that the deletion of sufC2B2 acts as a suppressor mutation in the absence of sufC1B1. In addition, the deletion of sufC1B1 and/or sufC2B2 did not affect the total Fe-S cluster content in M. acetivorans cells. Overall, these results reveal that the minimal SUF system is not required for Fe-S cluster biogenesis in M. acetivorans and challenge the universal role of SufBC in Fe-S cluster biogenesis in methanogens.


Assuntos
Transtornos do Crescimento , Ferro , Humanos , Células M , Methanosarcina/genética , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA