RESUMO
Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This nonsense mutation was found in all affected individuals from a large French-Canadian family segregating epilepsy and ASDs. Additional mutations in SYN1 (A51G, A550T and T567A) were found in 1.0 and 3.5% of French-Canadian individuals with autism and epilepsy, respectively. The majority of these SYN1 mutations were clustered in the proline-rich D-domain which is substrate of multiple protein kinases. When expressed in synapsin I (SynI) knockout (KO) neurons, all the D-domain mutants failed in rescuing the impairment in the size and trafficking of synaptic vesicle pools, whereas the wild-type human SynI fully reverted the KO phenotype. Moreover, the nonsense Q555X mutation had a dramatic impact on phosphorylation by MAPK/Erk and neurite outgrowth, whereas the missense A550T and T567A mutants displayed impaired targeting to nerve terminals. These results demonstrate that SYN1 is a novel predisposing gene to ASDs, in addition to epilepsy, and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies the pathogenesis of both diseases.
Assuntos
Transtorno Autístico/genética , Códon sem Sentido/genética , Epilepsias Parciais/genética , Sinapses/patologia , Sinapsinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Técnicas de Inativação de Genes , Humanos , Immunoblotting , Escore Lod , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Linhagem , Fosforilação , Quebeque , Análise de Sequência de DNA , Sinapses/genéticaRESUMO
Synapsins are synaptic vesicle (SV)-associated phosphoproteins involved in the regulation of neurotransmitter release. Synapsins reversibly tether SVs to the cytoskeleton and their phosphorylation by serine/threonine kinases increases SV availability for exocytosis by impairing their association with SVs and/or actin. We recently showed that synapsin I, through SH3- or SH2-mediated interactions, activates Src and is phosphorylated by the same kinase at Tyr301. Here, we demonstrate that, in contrast to serine phosphorylation, Src-mediated tyrosine phosphorylation of synapsin I increases its binding to SVs and actin, and increases the formation of synapsin dimers, which are both potentially involved in SV clustering. Synapsin I phosphorylation by Src affected SV dynamics and was physiologically regulated in brain slices in response to depolarization. Expression of the non-phosphorylatable (Y301F) synapsin I mutant in synapsin-I-knockout neurons increased the sizes of the readily releasable and recycling pools of SVs with respect to the wild-type form, which is consistent with an increased availability of recycled SVs for exocytosis. The data provide a mechanism for the effects of Src on SV trafficking and indicate that tyrosine phosphorylation of synapsins, unlike serine phosphorylation, stimulates the reclustering of recycled SVs and their recruitment to the reserve pool.
Assuntos
Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Potenciais da Membrana , Mutação , Neurônios/citologia , Neurônios/fisiologia , Fosforilação , Ligação Proteica , Multimerização Proteica , Ratos , Ratos Sprague-Dawley , Sinapsinas/química , Sinapsinas/genéticaRESUMO
There is a need for methods to screen and prioritize chemicals for potential hazard, including neurotoxicity. Microelectrode array (MEA) systems enable simultaneous extracellular recordings from multiple sites in neural networks in real time and thereby provide a robust measure of network activity. In this study, spontaneous activity measurements from primary neuronal cultures treated with three neurotoxic or three non-neurotoxic compounds was evaluated across four different laboratories. All four individual laboratories correctly identifed the neurotoxic compounds chlorpyrifos oxon (an organophosphate insecticide), deltamethrin (a pyrethroid insecticide) and domoic acid (an excitotoxicant). By contrast, the other three compounds (glyphosate, dimethyl phthalate and acetaminophen) considered to be non-neurotoxic ("negative controls"), produced only sporadic changes of the measured parameters. The results were consistent across the different laboratories, as all three neurotoxic compounds caused concentration-dependent inhibition of mean firing rate (MFR). Further, MFR appeared to be the most sensitive parameter for effects of neurotoxic compounds, as changes in electrical activity measured by mean frequency intra burst (MFIB), and mean burst duration (MBD) did not result in concentration-response relationships for some of the positive compounds, or required higher concentrations for an effect to be observed. However, greater numbers of compounds need to be tested to confirm this. The results obtained indicate that measurement of spontaneous electrical activity using MEAs provides a robust assessment of compound effects on neural network function.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inseticidas/farmacologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Toxicologia/métodos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/instrumentação , Concentração Inibidora 50 , Microeletrodos , Neurônios/fisiologia , RatosRESUMO
Conformational changes in the calpain molecule following interaction with natural ligands can be monitored by the binding of a specific monoclonal antibody directed against the catalytic domain of the protease. None of these conformational states showed catalytic activity and probably represent intermediate forms preceding the active enzyme state. In its native inactive conformation, calpain shows very low affinity for this monoclonal antibody, whereas, on binding to the ligands Ca(2+), substrate or calpastatin, the affinity increases up to 10-fold, with calpastatin being the most effective. This methodology was also used to show that calpain undergoes similar conformational changes in intact cells exposed to stimuli that induce either a rise in intracellular [Ca(2+)] or extensive diffusion of calpastatin into the cytosol without affecting Ca(2+) homeostasis. The fact that the changes in the calpain state are also observed under the latter conditions indicates that calpastatin availability in the cytosol is the triggering event for calpain-calpastatin interaction, which is presumably involved in the control of the extent of calpain activation through translocation to specific sites of action.
Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Catálise , Citosol/metabolismo , Eritrócitos/metabolismo , Humanos , Células Jurkat , Ligantes , Neutrófilos/metabolismo , Conformação Proteica , RatosRESUMO
This study aimed to describe the three-dimensional structure and the elastic properties of the sarcolemma of adult, fully differentiated, skeletal muscle fibres combining Atomic Force Microscopy (AFM) and optical microscopy. Single fibres were enzymatically dissociated from Flexor Digitorum Brevis of adult mice and were maintained in culture up to 3 weeks. On the sixth day after dissociation, the upper surface of intact fibres, either alive in solution or fixed and kept in solution or fixed and exposed in air, was analysed with AFM. The most prominent features in AFM images were periodic transversal foldings with an interval that corresponded to the sarcomere length. More detailed analysis of the topography profile showed that the depth in the folding decreased with increasing sarcomere length and that the crests of the foldings corresponded to the Z-lines. Minor periodic structures could be detected in the valleys between the major foldings. AFM images also showed deep depressions on the sarcolemma likely corresponding to openings of T tubules and caveolae. Two-dimensional elasticity maps were obtained using AFM as an indenter and showed that the crests of the transversal foldings correspond to higher stiffness regions. This study provides the first complete three-dimensional topography and mechanical characterization of intact, living skeletal muscle fibres and might form the basis for further investigations aimed to compare healthy and dystrophic muscles.
Assuntos
Fibras Musculares Esqueléticas/ultraestrutura , Sarcolema/ultraestrutura , Animais , Diferenciação Celular , Células Cultivadas , Elasticidade , Imageamento Tridimensional , Camundongos , Microscopia de Força Atômica , Músculo Esquelético/ultraestrutura , Sarcolema/fisiologiaRESUMO
Detection and characterization of chemically induced toxic effects in the nervous system represent a challenge for the hazard assessment of chemicals. In vivo, neurotoxicological assessments exploit the fact that the activity of neurons in the central and peripheral nervous system has functional consequences. And so far, no in vitro method for evaluating the neurotoxic hazard has yet been validated and accepted for regulatory purpose. The micro-electrode array (MEA) assay consists of a culture chamber into which an integrated array of micro-electrodes is capable of measuring extracellular electrophysiology (spikes and bursts) from electro-active tissues. A wide variety of electrically excitable biological tissues may be placed onto the chips including primary cultures of nervous system tissue. Recordings from this type of in vitro cultured system are non-invasive, give label free evaluations and provide a higher throughput than conventional electrophysiological techniques. In this paper, 20 substances were tested in a blinded study for their toxicity and dose-response curves were obtained from fetal rat cortical neuronal networks coupled to MEAs. The experimental procedure consisted of evaluating the firing activity (spiking rate) and modification/reduction in response to chemical administration. Native/reference activity, 30 min of activity recording per dilution, plus the recovery points (after 24 h) were recorded. The preliminary data, using a set of chemicals with different mode-of-actions (13 known to be neurotoxic, 2 non-neuroactive and not toxic, and 5 non-neuroactive but toxic) show good predictivity (sensitivity: 0.77; specificity: 0.86; accuracy: 0.85). Thus, the MEA with a neuronal network has the potency to become an effective tool to evaluate the neurotoxicity of substances in vitro.
RESUMO
Predicting off-targets by computational methods is getting increasing importance in early drug discovery stages. We herewith present a computational method based on binding site three-dimensional comparisons, which prompted us to investigate the cross-reaction of protein kinase inhibitors with synapsin I, an ATP-binding protein regulating neurotransmitter release in the synapse. Systematic pair-wise comparison of the staurosporine-binding site of the proto-oncogene Pim-1 kinase with 6,412 druggable protein-ligand binding sites suggested that the ATP-binding site of synapsin I may recognize the pan-kinase inhibitor staurosporine. Biochemical validation of this hypothesis was realized by competition experiments of staurosporine with ATP-gamma(35)S for binding to synapsin I. Staurosporine, as well as three other inhibitors of protein kinases (cdk2, Pim-1 and casein kinase type 2), effectively bound to synapsin I with nanomolar affinities and promoted synapsin-induced F-actin bundling. The selective Pim-1 kinase inhibitor quercetagetin was shown to be the most potent synapsin I binder (IC50 = 0.15 microM), in agreement with the predicted binding site similarities between synapsin I and various protein kinases. Other protein kinase inhibitors (protein kinase A and chk1 inhibitor), kinase inhibitors (diacylglycerolkinase inhibitor) and various other ATP-competitors (DNA topoisomerase II and HSP-90alpha inhibitors) did not bind to synapsin I, as predicted from a lower similarity of their respective ATP-binding sites to that of synapsin I. The present data suggest that the observed downregulation of neurotransmitter release by some but not all protein kinase inhibitors may also be contributed by a direct binding to synapsin I and phosphorylation-independent perturbation of synapsin I function. More generally, the data also demonstrate that cross-reactivity with various targets may be detected by systematic pair-wise similarity measurement of ligand-annotated binding sites.
Assuntos
Biologia Computacional/métodos , Inibidores de Proteínas Quinases/metabolismo , Sinapsinas/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Bovinos , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Estaurosporina/metabolismo , Estaurosporina/farmacologia , Sinapsinas/químicaRESUMO
Activation of calpain occurs as an early event in correlation with an increase in [Ca2+]i induced in rat brain upon treatment with a high salt diet for a prolonged period of time. The resulting sequential events have been monitored in the brain of normal and hypertensive rats of the Milan strain, diverging for a constitutive alteration in the level of [Ca2+]i found to be present in nerve cells of hypertensive animals. After 2 weeks of treatment, the levels of the plasma membrane Ca2+-ATPase and of native calpastatin are profoundly decreased. These degradative processes, more pronounced in the brain of hypertensive rats, are progressively and efficiently compensated in the brain of both rat strains by different incoming mechanisms. Along with calpastatin degradation, 15-kDa still-active inhibitory fragments are accumulated, capable of efficiently replacing the loss of native inhibitor molecules. A partial return to a more efficient control of Ca2+ homeostasis occurs in parallel, assured by an early increase in the expression of Ca2+-ATPase and of calpastatin, both producing, after 12 weeks of a high salt (sodium) diet, the restoration of almost original levels of the Ca2+ pump and of significant amounts of native inhibitor molecules. Thus, conservative calpastatin fragmentation, associated with an increased expression of Ca2+-ATPase and of the calpain natural inhibitor, has been demonstrated to occur in vivo in rat brain. This represents a sequential adaptive response capable of overcoming the effects of calpain activation induced by a moderate long term elevation of [Ca2+]i.
Assuntos
Encéfalo/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Dieta , Regulação para Baixo , Homeostase , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos , Cloreto de Sódio na Dieta/administração & dosagemRESUMO
It is generally accepted that the Ca(2+)-dependent interaction of calpain with calpastatin is the most relevant mechanism involved in the regulation of Ca(2+)-induced proteolysis. We now report that a calpain-calpastatin association can occur also in the absence of Ca(2+) or at very low Ca(2+) concentrations, reflecting the physiological conditions under which calpain retains its inactive conformational state. The calpastatin binding region is localized in the non-inhibitory L-domain containing the amino acid sequences encoded by exons 4-7. This calpastatin region recognizes a calpain sequence located near the end of the DII-domain. Interaction of calpain with calpastatins lacking these sequences becomes strictly Ca(2+)-dependent because, under these conditions, the transition to an active state of the protease is an obligatory requirement. The occurrence of the molecular association between Ca(2+)-free calpain and various recombinant calpastatin forms has been demonstrated by the following experimental results. Addition of calpastatin protected calpain from trypsin digestion. Calpain was coprecipitated when calpastatin was immunoprecipitated. The calpastatin molecular size increased following exposure to calpain. The two proteins comigrated in zymogram analysis. Furthermore, calpain-calpastatin interaction was perturbed by protein kinase C phosphorylation occurring at sites located at the exons involved in the association. At a functional level, calpain-calpastatin interaction at a physiological concentration of Ca(2+) represents a novel mechanism for the control of the amount of the active form of the protease potentially generated in response to an intracellular Ca(2+) influx.