Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Pharm ; 20(8): 3757-3778, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428824

RESUMO

Cell-based drug delivery systems are new strategies in targeted delivery in which cells or cell-membrane-derived systems are used as carriers and release their cargo in a controlled manner. Recently, great attention has been directed to cells as carrier systems for treating several diseases. There are various challenges in the development of cell-based drug delivery systems. The prediction of the properties of these platforms is a prerequisite step in their development to reduce undesirable effects. Integrating nanotechnology and artificial intelligence leads to more innovative technologies. Artificial intelligence quickly mines data and makes decisions more quickly and accurately. Machine learning as a subset of the broader artificial intelligence has been used in nanomedicine to design safer nanomaterials. Here, how challenges of developing cell-based drug delivery systems can be solved with potential predictive models of artificial intelligence and machine learning is portrayed. The most famous cell-based drug delivery systems and their challenges are described. Last but not least, artificial intelligence and most of its types used in nanomedicine are highlighted. The present Review has shown the challenges of developing cells or their derivatives as carriers and how they can be used with potential predictive models of artificial intelligence and machine learning.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Nanotecnologia , Nanomedicina , Sistemas de Liberação de Medicamentos
2.
Support Care Cancer ; 30(5): 3865-3873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35038031

RESUMO

PURPOSE: The current study aimed at investigating the efficacy of aprepitant-containing triple antiemetic regimen in FLOT (fluorouracil + leucovorin + oxaliplatin + docetaxel) recipients as well as the emetogenic potential of FLOT regimen, through comparison of nausea and vomiting rates in a moderately emetogenic chemotherapy, FLOT, and a highly emetogenic chemotherapy recipients. STUDY: Patients planned to receive one of FLOT, FOLFOX (fluorouracil + leucovorin + oxaliplatin/moderate-emetic risk), or TAC (docetaxel + doxorubicin + cyclophosphamide/high-emetic risk) regimens were recruited. All patients were treated with the same triple antiemetic regimen containing aprepitant. RESULTS: A total of 165 chemotherapy-naïve patients (52 FLOT recipients) were eligible to enter the study. At the end of day 5, "complete response" (primary efficacy endpoint) was achieved by 84.6%, 63.5%, and 61.5% of the FLOT-receiving patients in acute, delayed, and overall phases, respectively. A significant difference was seen among the odds of FLOT recipients and FOLFOX recipients concerning "complete response" achievement in delayed (p = 0.014) and overall (p = 0.017) phases, "no emesis" in delayed (p = 0.018) and overall (p = 0.010) phases, and also "complete protection" in acute (p = 0.023), delayed (p = 0.009), and overall (p = 0.006) phases; however, the difference between the odds of FLOT recipients and TAC recipients, in relation to achieving these endpoints, was insignificant. FLOT group showed significantly faster time-to-antiemetic regimen failure and time-to-first emetic episode in comparison with the FOLFOX group, which was insignificant in comparison with the TAC group. CONCLUSION: According to the findings, FLOT has to be considered as a high-emetic-risk regimen; provided that, as recommended by the antiemetic guidelines towards better management of delayed nausea and vomiting induced by highly emetogenic regimens, executing clinical trials concerning the efficacy of continuing dexamethasone on days 2-4 in aprepitant-containing triple antiemetic regimen schedule is required.


Assuntos
Antieméticos , Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Gástricas , Vômito , Antieméticos/uso terapêutico , Antineoplásicos/efeitos adversos , Eméticos/efeitos adversos , Junção Esofagogástrica , Humanos , Neoplasias Gástricas/complicações , Neoplasias Gástricas/tratamento farmacológico , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/prevenção & controle
3.
Nanomedicine ; 44: 102575, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714923

RESUMO

A cell-based drug delivery system based on yeast-cell wall loaded with sitagliptin, a drug with an anti-inflammatory effect, was developed to control neuroinflammation associated with Alzheimer's disease. The optimized nanoparticles had a spherical shape with a negative surface charge, and were shown to be less toxic than the carrier and sitagliptin. Moreover, the nanoparticles caused anti-inflammatory effects against tumor necrosis factor-alpha in mice model of neuroinflammation. The pharmacokinetics study showed the brain concentration of drug in the nanoparticles group was much higher than in the control group. To evaluate the effect of P-glycoprotein on brain entry of sitagliptin, the experiment was repeated with verapamil, as a P-glycoprotein inhibitor. Brain concentration of the nanoparticles group remained approximately unchanged, proving the "Trojan Horse" effect of the developed nanocarriers. The results are promising for using yeast-cell wall as a carrier for targeted delivery to immune cells for the management of inflammation.


Assuntos
Doença de Alzheimer , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Parede Celular/metabolismo , Camundongos , Doenças Neuroinflamatórias , Saccharomyces cerevisiae , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768751

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.


Assuntos
Edição de Genes/métodos , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/tendências , Engenharia Genética/métodos , Genoma , Humanos , Neoplasias/genética , Neoplasias/terapia , Células-Tronco/metabolismo
5.
Pharmacol Res ; 151: 104551, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743776

RESUMO

Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Inibidores da Topoisomerase/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , DNA Topoisomerases/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias/metabolismo , Inibidores da Topoisomerase/administração & dosagem , Inibidores da Topoisomerase/farmacologia
6.
J Basic Microbiol ; 57(2): 132-140, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859419

RESUMO

There is an increasing interest in the nanostructured polysaccharide-iron hydrogel produced by Klebsiella oxytoca. Critical physicochemical and biological characteristics of these nanostructures should be revealed for biomedical applications. Accordingly, an iron reducing strain K. oxytoca, which synthesizes biogenic polysaccharide-iron hydrogel nanoparticles, known as Fe (III)-exopolysaccharide (Fe-EPS) was isolated from a mineral spring. For microbiological identification purpose 16S rRNA sequence analysis and different morphological, physiological, and biochemical characteristics of the isolate were studied. Critical physicochemical and biological characteristics of the produced Fe-EPS were evaluated using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography (XRD), vibrating sample magnetometer (VSM). In addition, for the first time, Fe-EPS which synthesized by K. oxytoca was evaluated by dynamic light scattering (DLS), thermo gravimetric analysis (TGA), and cytotoxicity assay. TEM micrographs showed that the biogenic Fe-EPS is composed of ultra-small (about 1.8 nm) iron oxide nanoparticles (IONs) which are trapped in a polysaccharide matrix. The matrix was about 17% (w/w) of Fe-EPS total weight and provided a large negative charge of -71 mV. Interestingly, Fe-EPS showed a growth promotion effect on hepatocarcinoma cell line (Hep-G2) and 36% increase in the percentage of viability was observed by 24 h exposure to 500 µg ml-1 Fe-EPS.


Assuntos
Fenômenos Químicos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Ferro/metabolismo , Klebsiella oxytoca/metabolismo , Nanoestruturas/química , Polissacarídeos/metabolismo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Klebsiella oxytoca/classificação , Klebsiella oxytoca/isolamento & purificação , Klebsiella oxytoca/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Artigo em Inglês | MEDLINE | ID: mdl-38967072

RESUMO

AIMS: Here, we will review different bacterial causes of respiratory tract infections and discuss the available diagnostic methods. Moreover, we will provide some recently published patents and newer techniques, such as respiratory panels and omics approaches, and express the challenges in this path. BACKGROUND: Respiratory tract infections (RTIs) include those infections that can lead to the involvement of different respiratory parts, including the sinuses, throat, airways, and lungs. Acute respiratory tract infection is the leading cause of death from infectious illnesses worldwide. According to the World Health Organization, 1.6 to 2.2 million deaths have occurred due to acute respiratory infections in children under five years of age. About 4 million people die annually from respiratory infections, 98% of which are caused by lower respiratory infections. RESULTS: Depending on the type of pathogen, the severity of the infection can vary from mild to severe and even cause death. The most important pathogens involved in respiratory tract infections include Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. The symptoms are often similar, but the treatment can vary greatly. Therefore, correct diagnosis is so important. There are several methods for diagnosing respiratory infections. Traditional tests include the culture of respiratory samples, considered the primary tool for diagnosing respiratory infections in laboratories, and less common standard tests include rapid and antigenic tests. It is essential to think that the culture method is reliable. In the original method of diagnosing respiratory infections, some bacteria were challenging to grow successfully, and many clinical laboratories needed to be equipped for viral cultures. Another issue is the time to get the results, which may take up to 7 days. Rapid and antigenic tests are faster but need to be more accurate. CONCLUSION: The clinical laboratories are trying to be equipped with molecular methods for detecting respiratory pathogens and identifying the genetic material of the infectious agent in these new methods as the primary method in their agenda.

9.
Biotechnol Prog ; 40(3): e3443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462773

RESUMO

In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118-170 nm, with the zeta potential of 6.2-9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.


Assuntos
Dextrinas , Interleucina-12 , Plasmídeos , Polietilenoimina , Humanos , Sobrevivência Celular/efeitos dos fármacos , Dextrinas/química , Técnicas de Transferência de Genes , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-12/química , Peso Molecular , Tamanho da Partícula , Plasmídeos/genética , Plasmídeos/química , Polietilenoimina/química , Transfecção/métodos
10.
Cancer Chemother Pharmacol ; 94(2): 237-250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678150

RESUMO

PURPOSE: The current candidate gene association study aims to investigate tag SNPs from the TACR1 gene as pharmacogenetic predictors of response to the antiemetic guidelines-recommended, NK-1 receptor antagonist-based, triple antiemetic regimens. METHODS: A set of eighteen tag SNPs of TACR1 were genotyped in breast cancer patients receiving anthracycline and cyclophosphamide (with/without docetaxel) applying real-time PCR-HRMA. Data analysis for 121 ultimately enrolled patients was initiated by defining haplotype blocks using PHASE v.2.1. The association of each tag SNP and haplotype alleles with failure to achieve the defined antiemetic regimen efficacy endpoints was tested using PLINK (v.1.9 and v.1.07, respectively) based on the logistic regression, adjusting for the previously known chemotherapy-induced nausea and vomiting (CINV) prognostic factors. All reported p-values were corrected using the permutation test (n = 100,000). RESULTS: Four variants of rs881, rs17010730, rs727156, and rs3755462, as well as haplotypes containing the mentioned variants, were significantly associated with failure to achieve at least one of the defined efficacy endpoints. Variant annotation via in-silico studies revealed that the non-seed sequence variant, rs881, is located in the miRNA (hsa-miR-613) binding site. The other three variants or a variant in complete linkage disequilibrium with them overlap a region of high H3K9ac-promoter-like signature or regions of high enhancer-like signature in the brain or gastrointestinal tissue. CONCLUSION: Playing an essential role in regulating TACR1 expression, gene polymorphisms of TACR1 serve as the potential pharmacogenetic predictors of response to the NK-1 receptor antagonist-based, triple antiemetic regimens. If clinically approved, modifying the NK-1 receptor antagonist dose leads to better management of CINV in risk-allele carriers.


Assuntos
Antieméticos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Ciclofosfamida , Náusea , Polimorfismo de Nucleotídeo Único , Receptores da Neurocinina-1 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Pessoa de Meia-Idade , Antieméticos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Receptores da Neurocinina-1/genética , Náusea/induzido quimicamente , Náusea/genética , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Vômito/induzido quimicamente , Vômito/genética , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Adulto , Estudos de Associação Genética , Haplótipos , Idoso , Docetaxel/uso terapêutico , Docetaxel/efeitos adversos , Farmacogenética , Antraciclinas/efeitos adversos , Antraciclinas/uso terapêutico , Genótipo
11.
Sci Rep ; 14(1): 20564, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232139

RESUMO

High molecular weight polyethylenimine (HMW PEI; branched 25 kDa PEI) has been widely investigated for gene delivery due to its high transfection efficiency. However, the toxicity and lack of targeting to specific cells have limited its clinical application. In the present investigation, L-3, 4-dihydroxyphenylalanine (L-DOPA) was conjugated on HMW PEI in order to target L-type amino acid transporter 1 (LAT-1) and modulate positive charge density on the surface of polymer/plasmid complexes (polyplexes). The results of biophysical characterization revealed that the PEI conjugates are able to form nanoparticles ≤ 180 nm with the zeta potential ranging from + 9.5-12.4 mV. These polyplexes could condense plasmid DNA and protect it against nuclease digestion at the carrier to plasmid ratios higher than 4. L-DOPA conjugated PEI derivatives were complexed with a plasmid encoding human interleukin-12 (hIL-12). Targeted polyplexes showed up to 2.5 fold higher transfection efficiency in 4T1 murine mammary cancer cell line, which expresses LAT-1, than 25 kDa PEI polyplexes prepared in the same manner. The cytotoxicity of these polyplexes was also substantially lower than the unmodified parent HMW PEI. These results support the use of L-3, 4-dihydroxyphenylalanine derivatives of PEI in any attempt to develop a LAT-1 targeted gene carrier.


Assuntos
Peso Molecular , Plasmídeos , Polietilenoimina , Polietilenoimina/química , Plasmídeos/genética , Plasmídeos/química , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Di-Hidroxifenilalanina/química , Transfecção/métodos , Técnicas de Transferência de Genes , Interleucina-12/metabolismo , Interleucina-12/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Nanopartículas/química , DNA/química
12.
Biotechnol Prog ; : e3473, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757348

RESUMO

Successful gene therapy relies on carriers to transfer genetic materials with high efficiency and low toxicity in a targeted manner. To enhance targeted cell binding and uptake, we developed and synthesized a new gene delivery vector based on graphene oxide (GO) modified by branched polyethyleneimine (BPEI) and folic acid (FA). The GO-PEI-FA nanocarriers exhibit lower toxicity compared to unmodified PEI, as well as having the potential to efficiently condense and protect pDNA. Interestingly, increasing the polymer content in the polyplex formulation improved plasmid transfer ability. Substituting graphene oxide for PEI at an N/P ratio of 10 in the HepG2 and THP1 cell lines improved hIL-12 expression by up to approximately eightfold compared to simple PEI, which is twice as high as GO-PEI-FA in Hek293 at the same N/P ratio. Therefore, the GO-PEI-FA described in this study may serve as a targeting nanocarrier for the delivery of the hIL-12 plasmid into cells overexpressing folic acid receptors, such as those found in hepatocellular carcinoma.

13.
Iran J Basic Med Sci ; 26(8): 934-940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427327

RESUMO

Objectives: Huntington's disease (HD) is identified as a progressive genetic disorder caused by a mutation in the Huntington gene. Although the pathogenesis of this disease has not been fully understood, investigations have demonstrated the role of various genes and non-coding RNAs in the disease progression. In this study, we aimed to discover the potential promising circRNAs which can bind to miRNAs of HD. Materials and Methods: We used several bioinformatics tools such as ENCORI, Cytoscape, circBase, Knime, and Enrichr to collect possible circRNAs and then evaluate their connections with target miRNAs to reach this goal. We also found the probable relationship between parental genes of these circRNAs and the disease progress. Results: According to the data collected, more than 370 thousand circRNA-miRNA interactions were found for 57 target miRNAs. Several of circRNAs were spliced out of parental genes involved in the etiology of HD. Some of them need to be further investigated to elucidate their role in this neurodegenerative disease. Conclusion: This in silico investigation highlights the potential role of circRNAs in the progression of HD and opens up new horizons for drug discovery as well as diagnostic approaches for the disease.

14.
Process Biochem ; 124: 269-279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36514356

RESUMO

The SARS-CoV-2 outbreak and emergence of COVID-19 resulted in the development of different vaccines based on various platforms to combat the disease. While the conventional platforms of inactivated/live attenuated, subunit proteins and virus-like particles (VLPs) have provided efficient and safe vaccines, novel platforms of viral vector- and nucleic acid-based vaccines opened up new horizons for vaccine development. The emergence of COVID-19 pandemic showed that the availability of platforms with high possibility of quick translation from bench to bedside is a prerequisite step in vaccine development in pandemics. Moreover, parallel development of different platforms as well as considering the shipping, storage condition, distribution infrastructure and route of administration are key players for successful and robust response. This review highlights the lessons learned from the current COVID-19 pandemic in terms of vaccine development to provide quick response to future outbreaks of infectious diseases and the importance of vaccine platform in its storage condition and shipping. Finally, the potential application of current COVID-19 vaccine platforms in the treatment of non-infectious diseases has been discussed.

15.
J Biomol Struct Dyn ; 41(16): 7640-7650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36134594

RESUMO

Glucocorticoids have been used in the treatment of many diseases including inflammatory and autoimmune diseases. Despite the wide therapeutic effects of synthetic glucocorticoids, the use of these compounds has been limited due to side effects such as osteoporosis, immunodeficiency, and hyperglycaemia. To this end, extensive studies have been performed to discover new glucocorticoid modulators with the aim of increasing affinity for the receptor and thus less side effects. In the present work, structure-based virtual screening was used for the identification of novel potent compounds with glucocorticoid effects. The molecules derived from ZINC database were screened on account of structural similarity with some glucocorticoid agonists as the template. Subsequently, molecular docking was performed on 200 selected compounds to obtain the best steroidal and non-steroidal conformations. Three compounds, namely ZINC_000002083318, ZINC_000253697499 and ZINC_000003845653, were selected with the binding energies of -11.5, -10.5, and -9.5 kcal/mol, respectively. Molecular dynamic simulations on superior structures were accomplished with the glucocorticoid receptor. Additionally, root mean square deviations, root mean square fluctuation, radius of gyration, hydrogen bonds, and binding-free energy analysis showed the binding stability of the proposed compounds compared to budesonide as an approved drug. The results demonstrated that all the compounds had suitable binding stability compared to budesonide, while ZINC_000002083318 showed a tighter binding energy compared to the other compounds.Communicated by Ramaswamy H. Sarma.

16.
J Control Release ; 362: 667-691, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666302

RESUMO

Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.

17.
Biotechnol Prog ; 39(2): e3310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36306343

RESUMO

Co-delivery of small chemotherapeutic molecules and nucleic acid materials via targeted carriers has attracted great attention for treatment of resistant tumors and reducing adverse effects. In this study, a targeted carrier for co-delivery was prepared based on low-molecular weight polyethylenimine (LMW PEI). Paclitaxel (PTX) was covalently conjugated onto PEI via a succinate linker. The PEI conjugate was decorated with L-DOPA in order to target large neutral amino acid transporter-1 (LAT-1) that is over-expressed on various cancer cells. This PEI conjugate was complexed with human ABCB1 shRNA plasmid to down-regulate the expression of P-glycoprotein, as one of the major efflux pumps inducing resistance against chemotherapeutics. The formation of PEI conjugate enhanced the solubility of PTX and resulted in the condensation and protection of plasmid DNA in nanosized polyplexes. The results of targeted delivery into the cells demonstrated that PEI conjugate transferred the payloads to the cells over-expressing LAT-1 transporter, while the biological effects on the cells lacking the transporter was negligible. Also, shRNA-mediated down-regulation of P-gp led to the increase of toxic effects on the cells over-expressing P-gp. This study suggests a promising approach for co-delivery of small molecules and nucleic acid materials in a targeted manner for cancer therapy.


Assuntos
Levodopa , Paclitaxel , Humanos , Paclitaxel/farmacologia , Levodopa/farmacologia , Levodopa/genética , RNA Interferente Pequeno/genética , Peso Molecular , Plasmídeos , Polietilenoimina/química , Linhagem Celular Tumoral
18.
Pharmaceutics ; 15(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514130

RESUMO

Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.

19.
ACS Omega ; 8(10): 8960-8976, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936324

RESUMO

Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.

20.
Iran J Med Sci ; 47(6): 541-548, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36380972

RESUMO

Background: Opium abuse is one of the social hazards in the Middle Eastern countries. Opium consumption attributes to various malignancies. However, the exact molecular mechanism of this correlation still remains unclear. Cancer and inflammation are closely correlated. Interleukin-33 (IL-33) and its receptors, transmembrane ST2 (ST2L) and soluble ST2 (sST2), have been significantly associated with tumorigenicity. The present study aimed to investigate whether IL-33 and sST2 levels serve as cancer biomarkers in opium users. Methods: Serum samples were collected from 100 opium users and 100 healthy non-opium users in a nested case-control design. The subjects with over five years of history of opium abuse were enrolled. To assess the incidence of malignancies, the opium users were followed up from 2014 to 2019. Serum levels of IL-33 and sST2 were measured using an ELISA kit. For comparison of IL-33 and sST2 levels between the groups, two-tailed Student's t test and Mann-Whitney U test were utilized, accordingly. Logistic regression analysis was performed to evaluate the influence of confounders on the incidence of cancer. Results: During the five-year follow-up, eight opium users were diagnosed with cancer. Cancer was developed by 9.3 folds in the individuals abusing opium compared to that in the non-opium users (P=0.040, OR=9.3; 95%CI [1.1-79.4]). Serum levels of IL-33 were found to be significantly higher in the opium users than those in the healthy control group (P=0.001). The sST2 levels were significantly lower in the opium users (P=0.001). The opium users with cancer exhibited significantly higher levels of IL-33 and lower levels of sST2 than the cancer-free ones (P=0.001). Conclusion: Decline in sST2 levels and rise in the level of IL-33 are valuable biomarkers in predicting cancers. Regarding the significant alterations in the levels of these biomarkers in the opium users, as well as those in the opium users diagnosed with cancer, IL-33 and sST2 may serve as potential biomarkers in the early prediction of cancer.


Assuntos
Neoplasias , Dependência de Ópio , Humanos , Biomarcadores Tumorais , Estudos de Casos e Controles , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Neoplasias/complicações , Neoplasias/epidemiologia , Ópio/efeitos adversos , Dependência de Ópio/complicações , Dependência de Ópio/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA