Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 558-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20445231

RESUMO

The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Pyrococcus furiosus/química , Rubredoxinas/química , Difração de Nêutrons/métodos , Difração de Raios X/métodos
2.
ACS Appl Mater Interfaces ; 1(10): 2262-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20355861

RESUMO

Entrapment of biomolecules in silica-derived sol-gels has grown into a vibrant area of research since it was originally demonstrated. However, accessing the consequences of entrapment on biomolecules and the gel structure remains a major challenge in characterizing these biohybrid materials. We present the first demonstration that it is possible with small-angle neutron scattering (SANS) to study the conformation of dilute proteins that are entrapped in transparent and dense sol-gels. Using deuterium-labeled green fluorescent protein (GFP) and SANS with contrast variation, we demonstrate that the scattering signatures of the sol-gel and the protein can be separated. Analysis of the scattering curves of the sol-gels using a mass-fractal model shows that the size of the colloidal silica particles and the fractal dimensions of the gels were similar in the absence and presence of protein, demonstrating that GFP did not influence the reaction pathway for the formation of the gel. The major structural difference in the gels was that the pore size was increased 2-fold in the presence of the protein. At the contrast match point for silica, the scattering signal from GFP inside the gel became distinguishable over a wide q range. Simulated scattering curves representing a monomer, end-to-end dimer, and parallel dimer of the protein were calculated and compared to the experimental data. Our results show that the most likely structure of GFP is that of an end-to-end dimer. This approach can be readily applied and holds great potential for the structural characterization of complex biohybrid and other materials.


Assuntos
Géis/química , Transição de Fase , Proteínas/química , Géis/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA