Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant J ; 93(6): 1143-1159, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29381239

RESUMO

Changes in the performance of genotypes in different environments are defined as genotype × environment (G×E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and climate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phenomenon remains unclear. To dissect the basis of grapevine G×E interactions we characterized berry transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two genotypes cultivated in three different environments over two vintages. We identified, through a novel data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment, genotype-dependent but unaffected by the environment, environmentally-dependent regardless of genotype, and G×E-related. The G×E-related genes showed different degrees of within-cultivar allelic diversity in the two genotypes and were enriched for stress responses, signal transduction and secondary metabolism categories. Our study unraveled the mutual relationships between genotypic and environmental variables during G×E interaction in a woody perennial species, providing a reference model to explore how cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in determining the performance of different varieties, by enhancing berry quality traits, was unraveled.


Assuntos
Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vitis/genética , Meio Ambiente , Ontologia Genética , Genes de Plantas/genética , Genótipo , Fenótipo , Vitis/metabolismo
2.
Bioinformatics ; 29(6): 717-24, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376351

RESUMO

MOTIVATION: Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. They have been used for hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. So far, the main platform for expression data has been DNA microarrays; however, the recent development of RNA-seq allows for higher accuracy and coverage of transcript populations. It is therefore important to assess the potential for biological investigation of coexpression networks derived from this novel technique in a condition-independent dataset. RESULTS: We collected 65 publicly available Illumina RNA-seq high quality Arabidopsis thaliana samples and generated Pearson correlation coexpression networks. These networks were then compared with those derived from analogous microarray data. We show how Variance-Stabilizing Transformed (VST) RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture. Microarray networks show a slightly higher score in biology-derived quality assessments such as overlap with the known protein-protein interaction network and edge ontological agreement. Different coexpression network centralities are investigated; in particular, we show how betweenness centrality is generally a positive marker for essential genes in A.thaliana, regardless of the platform originating the data. In the end, we focus on a specific gene network case, showing that although microarray data seem more suited for gene network reverse engineering, RNA-seq offers the great advantage of extending coexpression analyses to the entire transcriptome.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência de RNA , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos/métodos
3.
Bioinformatics ; 28(1): 123-4, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22084252

RESUMO

SUMMARY: The advent of high-throughput sequencers (HTS) introduced the need of new tools in order to analyse the large amount of data that those machines are able to produce. The mandatory first step for a wide range of analyses is the alignment of the sequences against a reference genome. We present a major update to our rNA (randomized Numerical Aligner) tool. The main feature of rNA is the fact that it achieves an accuracy greater than the majority of other tools in a feasible amount of time. rNA executables and source codes are freely downloadable at http://iga-rna.sourceforge.net/. CONTACT: vezzi@appliedgenomics.org; delfabbro@appliedgenomics.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Humanos
4.
Nature ; 449(7161): 463-7, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17721507

RESUMO

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Poliploidia , Vitis/classificação , Vitis/genética , Arabidopsis/genética , DNA Intergênico/genética , Éxons/genética , Genes de Plantas/genética , Íntrons/genética , Cariotipagem , MicroRNAs/genética , Dados de Sequência Molecular , Oryza/genética , Populus/genética , RNA de Plantas/genética , RNA de Transferência/genética , Análise de Sequência de DNA
5.
BMC Genomics ; 11: 109, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20152027

RESUMO

UNLABELLED: The version of this article published in BMC Genomics 2009, 10:558, contains data in Table 1 which are now known to be unreliable, and an illustration, in Figure 1, of unusual miRNA processing events predicted by these unreliable data. In this full-length correction, new data replace those found to be unreliable, leading to a more straightforward interpretation without altering the principle conclusions of the study. Table 1 and associated methods have been corrected, Figure 1 deleted, supplementary file 1 added, and modifications made to the sections "Deep sequencing of small RNAs from grapevine leaf tissue" and "Microarray analysis of miRNA expression". The editors and authors regret the inconvenience caused to readers by premature publication of the original paper. BACKGROUND: MicroRNAs are short (~21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families. RESULTS: Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts. CONCLUSIONS: Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.


Assuntos
MicroRNAs/genética , Splicing de RNA , Vitis/genética , RNA de Plantas/genética , Análise de Sequência de RNA
6.
BMC Genomics ; 10: 558, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19939267

RESUMO

BACKGROUND: MicroRNAs are short (approximately 21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families. RESULTS: Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts. CONCLUSION: Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.


Assuntos
MicroRNAs/genética , Análise de Sequência de RNA , Vitis/genética , Processamento Alternativo , Sequência de Bases , Biologia Computacional , Frutas/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Splicing de RNA , RNA de Plantas/genética
7.
Nat Biotechnol ; 32(7): 656-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908277

RESUMO

Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes--a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes--and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.


Assuntos
Cruzamento , Citrus/classificação , Citrus/genética , Sequência Conservada/genética , Produtos Agrícolas/genética , Variação Genética/genética , Genoma de Planta/genética , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
8.
PLoS One ; 8(12): e85024, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376861

RESUMO

Next Generation Sequencing is having an extremely strong impact in biological and medical research and diagnostics, with applications ranging from gene expression quantification to genotyping and genome reconstruction. Sequencing data is often provided as raw reads which are processed prior to analysis 1 of the most used preprocessing procedures is read trimming, which aims at removing low quality portions while preserving the longest high quality part of a NGS read. In the current work, we evaluate nine different trimming algorithms in four datasets and three common NGS-based applications (RNA-Seq, SNP calling and genome assembly). Trimming is shown to increase the quality and reliability of the analysis, with concurrent gains in terms of execution time and computational resources needed.


Assuntos
Algoritmos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Projetos de Pesquisa/normas
9.
Nat Genet ; 45(5): 487-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525075

RESUMO

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Assuntos
Agricultura , Evolução Biológica , Variação Genética , Genoma de Planta/genética , Prunus/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Polímeros/metabolismo , Propanóis/metabolismo , Prunus/classificação
10.
Gigascience ; 2(1): 10, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23870653

RESUMO

BACKGROUND: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. RESULTS: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. CONCLUSIONS: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA