RESUMO
Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.
Assuntos
Doença de Alzheimer/fisiopatologia , Dendritos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/patologia , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Proteínas tau/genéticaRESUMO
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Assuntos
Fatores de Transcrição Forkhead , Proteínas do Tecido Nervoso , Oligonucleotídeos Antissenso , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Proteína Proteolipídica de Mielina/genética , Masculino , Modelos Animais de Doenças , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/tratamento farmacológicoRESUMO
Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Transcriptoma , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Biomarcadores/metabolismoRESUMO
In Alzheimer's disease (AD), where amyloid-ß (Aß) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aß- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Assuntos
Doença de Alzheimer , Proteínas de Membrana Lisossomal/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/fisiologia , Animais , Modelos Animais de Doenças , Interneurônios/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Proteínas tau/genéticaRESUMO
The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.
Assuntos
Aspartato-tRNA Ligase , Doenças Desmielinizantes , Animais , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Pré-Escolar , Humanos , Camundongos , Mutação , FenótipoRESUMO
Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-ß (Aß) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aß-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aß-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aß. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.
Assuntos
Doença de Alzheimer/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Memória/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos TransgênicosRESUMO
Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.
Assuntos
Azacitidina/farmacologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/fisiologiaRESUMO
N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.
Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Canavan/metabolismo , Doença de Canavan/terapia , Acetiltransferases/metabolismo , Amidoidrolases/administração & dosagem , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Doença de Canavan/patologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Terapia Genética , Humanos , Masculino , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS: DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS: Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.
Assuntos
Aspartato-tRNA Ligase/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/enzimologia , Animais , Aspartato-tRNA Ligase/genética , Astrócitos/enzimologia , Astrócitos/patologia , Atenção/fisiologia , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios/enzimologia , Neurônios/patologia , Oligodendroglia/enzimologia , Oligodendroglia/patologia , Fenótipo , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Medula Espinal/enzimologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia , Sinaptossomos/enzimologia , Proteína ran de Ligação ao GTP/metabolismoRESUMO
The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43(A315T), with controlled neuronal over-expression. Constitutive expression of human TDP-43(A315T) resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43(A315T) brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43(A315T) expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43(A315T) mice are at least in part a direct and transient effect of the presence of TDP-43(A315T). Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.
Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Mutação , Recuperação de Função Fisiológica/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Doxiciclina , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Gliose/patologia , Gliose/fisiopatologia , Força da Mão/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Memória Espacial/fisiologiaRESUMO
The Tetracycline (Tet)-controlled inducible system is the most widely used reversible system for transgene expression in mice with over 500 lines created to date. Although this system has been optimized over the years, it still has limitations such as residual transgene expression when turned off, referred to as leakiness. Here, we present a series of new Tet-OFF transgenic mice based on the second generation tetracycline-responsive transactivator system. The tTA-Advanced (tTA2(S)) is expressed under control of the neuron-specific Thy1.2 promoter (Thy-OFF), to regulate expression in the mouse brain. In addition, we generated a lacZ reporter line, utilizing the P tight Tet-responsive promoter (P(tight)-lacZ), to test our system. Two Thy-OFF transgenic lines displaying two distinct patterns of expression were selected. Oral doxycycline treatment of Thy-OFF/P tight-lacZ mice demonstrated tight transgene regulation with no leak expression. These new Thy-OFF mice are valuable for studies in a broad range of neurodegenerative diseases such as Alzheimer's disease and related forms of dementia, where control of transgene expression is critical to understanding mechanisms underlying the disease. Furthermore, P tight-lacZ reporter mice may be widely applicable.
Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Transgenes/genética , Animais , Clonagem Molecular , Doxiciclina , Imunofluorescência , Galactosídeos , Indóis , Camundongos , Camundongos Transgênicos , Tetraciclina , Antígenos Thy-1/genética , TransativadoresRESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Neurônios/metabolismoRESUMO
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
Assuntos
Animais de Laboratório , Guias como Assunto , Animais , Animais de Laboratório/genética , Reprodutibilidade dos Testes , Projetos de Pesquisa , Experimentação Animal/normas , Pesquisa Biomédica/normasRESUMO
Alzheimer's disease (AD) brains are characterized by amyloid-beta-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles (NFTs); however, in frontotemporal dementia, the tau pathology manifests in the absence of overt amyloid-beta plaques. Therapeutic strategies so far have primarily been targeting amyloid-beta, although those targeting tau are only slowly beginning to emerge. Here, we identify sodium selenate as a compound that reduces tau phosphorylation both in vitro and in vivo. Importantly, chronic oral treatment of two independent tau transgenic mouse strains with NFT pathology, P301L mutant pR5 and K369I mutant K3 mice, reduces tau hyperphosphorylation and completely abrogates NFT formation. Furthermore, treatment improves contextual memory and motor performance, and prevents neurodegeneration. As hyperphosphorylation of tau precedes NFT formation, the effect of selenate on tau phosphorylation was assessed in more detail, a process regulated by both kinases and phosphatases. A major phosphatase implicated in tau dephosphorylation is the serine/threonine-specific protein phosphatase 2A (PP2A) that is reduced in both levels and activity in the AD brain. We found that selenate stabilizes PP2A-tau complexes. Moreover, there was an absence of therapeutic effects in sodium selenate-treated tau transgenic mice that coexpress a dominant-negative mutant form of PP2A, suggesting a mediating role for PP2A. Taken together, sodium selenate mitigates tau pathology in several AD models, making it a promising lead compound for tau-targeted treatments of AD and related dementias.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Compostos de Selênio/uso terapêutico , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutação , Degeneração Neural/fisiopatologia , Fosforilação/efeitos dos fármacos , Condicionamento Físico Animal , Proteína Fosfatase 2/metabolismo , Ácido Selênico , Proteínas tau/genéticaRESUMO
Spinal cord injury (SCI) occurs when the spinal cord is damaged from either a traumatic event or disease. SCI is characterised by multiple injury phases that affect the transmission of sensory and motor signals and lead to temporary or long-term functional deficits. There are few treatments for SCI. Estrogens and estrogenic compounds, however, may effectively mitigate the effects of SCI and therefore represent viable treatment options. This review systematically examines the pre-clinical literature on estrogen and estrogenic compound neuroprotection after SCI. Several estrogens were examined by the included studies: estrogen, estradiol benzoate, Premarin, isopsoralen, genistein, and selective estrogen receptor modulators. Across these pharmacotherapies, we find significant evidence that estrogens indeed offer protection against myriad pathophysiological effects of SCI and lead to improvements in functional outcomes, including locomotion. A STRING functional network analysis of proteins modulated by estrogen after SCI demonstrated that estrogen simultaneously upregulates known neuroprotective pathways, such as HIF-1, and downregulates pro-inflammatory pathways, including IL-17. These findings highlight the strong therapeutic potential of estrogen and estrogenic compounds after SCI.
Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Estrogênios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Medula EspinalRESUMO
Alzheimer's disease (AD) is the most common form of dementia. There is no treatment and AD models have focused on a small subset of genes identified in familial AD. Microarray studies have identified thousands of dysregulated genes in the brains of patients with AD yet identifying the best gene candidates to both model and treat AD remains a challenge. We performed a meta-analysis of microarray data from the frontal cortex (n = 697) and cerebellum (n = 230) of AD patients and healthy controls. A two-stage artificial intelligence approach, with both unsupervised and supervised machine learning, combined with a functional network analysis was used to identify functionally connected and biologically relevant novel gene candidates in AD. We found that in the frontal cortex, genes involved in mitochondrial energy, ATP, and oxidative phosphorylation, were the most significant dysregulated genes. In the cerebellum, dysregulated genes were involved in mitochondrial cellular biosynthesis (mitochondrial ribosomes). Although there was little overlap between dysregulated genes between the frontal cortex and cerebellum, machine learning models comprised of this overlap. A further functional network analysis of these genes identified that two downregulated genes, ATP5L and ATP5H, which both encode subunits of ATP synthase (mitochondrial complex V) may play a role in AD. Combined, our results suggest that mitochondrial dysfunction, particularly a deficit in energy homeostasis, may play an important role in AD.
RESUMO
Genetically modified (GM) mice are widely used in biomedical research because they can address complex questions in an in-vivo setting that could not otherwise be addressed in-vitro. Microinjection of zygotes remains the most common technique to generate GM animals to date. Here, we describe the targeted insertion (knock-in) of transgenes by microinjection of 1-cell or 2-cell stage embryos into the murine Rosa26 safe harbor.
Assuntos
Sistemas CRISPR-Cas , RNA não Traduzido/genética , Zigoto , Animais , Sistemas CRISPR-Cas/genética , Camundongos , Microinjeções , TransgenesRESUMO
Hyperphosphorylated microtubule-associated protein tau has been implicated in dementia, epilepsy, and other neurological disorders. In contrast, site-specific phosphorylation of tau at threonine 205 (T205) by the kinase p38γ was shown to disengage tau from toxic pathways, serving a neuroprotective function in Alzheimer's disease. Using a viral-mediated gene delivery approach in different mouse models of epilepsy, we show that p38γ activity-enhancing treatment reduces seizure susceptibility, restores neuronal firing patterns, reduces behavioral deficits, and ameliorates epilepsy-induced deaths. Furthermore, we show that p38γ-mediated phosphorylation of tau at T205 is essential for this protection in epilepsy, as a lack of this critical interaction reinstates pathological features and accelerates epilepsy in vivo. Hence, our work provides a scope to harness p38γ as a future therapy applicable to acute neurological conditions.
Assuntos
Doença de Alzheimer , Epilepsia , Animais , Camundongos , Epilepsia/genética , Epilepsia/terapia , Convulsões/genética , Convulsões/terapia , Fosforilação , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Modelos Animais de DoençasRESUMO
Alterations in DNA methylation occur during development, but the mechanisms by which they influence gene expression remain uncertain. There are few examples where modification of a single CpG dinucleotide directly affects transcription factor binding and regulation of a target gene in vivo. Here, we show that the erythroid transcription factor GATA-1 - that typically binds T/AGATA sites - can also recognise CGATA elements, but only if the CpG dinucleotide is unmethylated. We focus on a single CGATA site in the c-Kit gene which progressively becomes unmethylated during haematopoiesis. We observe that methylation attenuates GATA-1 binding and gene regulation in cell lines. In mice, converting the CGATA element to a TGATA site that cannot be methylated leads to accumulation of megakaryocyte-erythroid progenitors. Thus, the CpG dinucleotide is essential for normal erythropoiesis and this study illustrates how a single methylated CpG can directly affect transcription factor binding and cellular regulation.