Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768437

RESUMO

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Assuntos
Neoplasias Colorretais , Estudantes , Humanos , México , Estudos Interdisciplinares , Terapias em Estudo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299314

RESUMO

Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.


Assuntos
Neoplasias Associadas a Colite/etiologia , Granulócitos/patologia , Interleucina-17/fisiologia , Fator de Transcrição STAT1/fisiologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/fisiopatologia , Progressão da Doença , Feminino , Granulócitos/imunologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Microambiente Tumoral/imunologia
3.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244885

RESUMO

Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as ß-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-ß, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.


Assuntos
Adjuvantes Farmacêuticos/uso terapêutico , Carcinogênese/patologia , Colite/complicações , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/uso terapêutico , Glicina/uso terapêutico , Pirimidinas/uso terapêutico , Fator de Transcrição STAT6/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colite/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fluoruracila/farmacologia , Glicina/farmacologia , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , beta Catenina/metabolismo
4.
Int J Cancer ; 145(11): 3126-3139, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407335

RESUMO

Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1ß, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azoximetano/efeitos adversos , Colite/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Proteínas de Helminto/administração & dosagem , Taenia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/complicações , Neoplasias do Colo/etiologia , Modelos Animais de Doenças , Feminino , Proteínas de Helminto/farmacologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosforilação , Proto-Oncogene Mas , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Appl Toxicol ; 39(11): 1586-1605, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415109

RESUMO

Food-grade titanium dioxide labeled as E171 has been approved for human consumption by the Food and Drug Administration (USA) and by the European Union for five decades. However, titanium dioxide has been classified as a possible carcinogen for humans by the International Agency of Research in Cancer raising concerns of its oral intake and the translocation to bloodstream, which could disturb barriers such as the blood-testis barrier. There is evidence that titanium dioxide by intragastric/intraperitoneal/intravenous administration induced alterations on testosterone levels, testicular function and architecture, but studies of the E171 effects on the testicle structure and blood-testis barrier are limited. E171 is contained not only in foods in liquid matrix but also in solid ones, which can exert different biological effects. We aimed to compare the effects of E171 consumption in a solid matrix (0.1%, 0.5% and 1% in pellets) and liquid suspension (5 mg/kg body weight) on testis structure, inflammation infiltrate and blood-testis barrier disruption of male BALB/c mice. Results showed that none of the administration routes had influence on body weight but an increase in germ cell sloughing and the infiltrate of inflammatory cells in seminiferous tubules, together with disruption of the blood-testis barrier were similar in testis of both groups even if the dose received in mice in liquid matrix was 136 or 260 times lower than the dose reached by oral intake in solid E171 pellets in 0.5% E171 and 1% E171, respectively. This study highlights the attention on matrix food containing E171 and possible adverse effects on testis when E171 is consumed in a liquid matrix.


Assuntos
Barreira Hematotesticular/efeitos dos fármacos , Aditivos Alimentares , Nanopartículas Metálicas/toxicidade , Epitélio Seminífero/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Titânio/toxicidade , Ração Animal/análise , Animais , Barreira Hematotesticular/imunologia , Barreira Hematotesticular/patologia , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Água Potável/química , Ingestão de Alimentos/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Antígenos de Histocompatibilidade Classe II/imunologia , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Epitélio Seminífero/imunologia , Epitélio Seminífero/patologia , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/imunologia , Túbulos Seminíferos/ultraestrutura , Células de Sertoli/imunologia , Células de Sertoli/ultraestrutura , Propriedades de Superfície , Titânio/administração & dosagem , Titânio/química
6.
Mol Reprod Dev ; 83(10): 927-937, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27182927

RESUMO

Cytoskeleton remodeling is necessary for capacitation and the acrosome reaction in spermatozoa. F-actin is located in the acrosome and equatorial region during capacitation, but is relocated in the post-acrosomal region during the acrosome reaction in spermatozoa from bull, rat, mice, and guinea pig. Actin polymerization and relocalization are generally regulated by small GTPases that activate Wasp protein, which coordinates with Arp2/3, profilin I, and profilin II to complete cytoskeletal remodeling. This sequence of events is not completely described in spermatozoa, though. Therefore, the aim of this study was to determine if Wasp interacts with small GTPases (RhoA, RhoB, and Cdc42) and proteins (Arp2/3, profilin I, and profilin II) that co-localize with F-actin during capacitation and the acrosome reaction in English guinea pig spermatozoa obtained from the vas deferens. The spermatozoa were capacitated in calcium-free medium, incubated with an activator or an inhibitor of GTPases, and then induced to acrosome react using calcium. The distribution patterns of F-actin were compared to the patterns of Wasp and its putative interaction partners: Wasp and RhoB, but not RhoA or Cdc42, localization overlap with F-actin during capacitation and the acrosome reaction. Activation of small GTPases localized RhoB to the post-acrosomal region whereas their inhibition prevented acrosome exocytosis. Arp2/3 and profilin II appear to interact with Wasp in the post-acrosomal region and flagellum, while profilin I and Wasp could be found in the equatorial region. Thus, Wasp and F-actin distribution overlap during capacitation and acrosome reaction, and small GTPases play an important role in cytoskeleton remodeling during these processes in spermatozoa. Mol. Reprod. Dev. 83: 927-937, 2016 © 2016 Wiley Periodicals, Inc.


Assuntos
Reação Acrossômica/fisiologia , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Feminino , Cobaias , Masculino , Espermatozoides/citologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/genética
7.
Environ Res ; 136: 424-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460664

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO2-B) using TiO2 spheres (TiO2-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm(2)) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO2-B effect on agglomerates size, cell size and granularity than TiO2-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO2-SP and TiO2-B, respectively; TiO2-SP and TiO2-B induced 23% and 70% cell size decrease, respectively, whilst TiO2-SP and TiO2-B induced 7 and 14-fold of granularity increase. NOx production was down-regulated (31%) by TiO2-SP and up-regulated (70%) by TiO2-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO2-SP exposed cells while TiO2-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO2-B had higher proliferative potential than TiO2-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome.


Assuntos
Membrana Corioalantoide/efeitos dos fármacos , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas , Titânio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Microscopia Eletrônica , Óxido Nítrico/metabolismo
8.
Environ Toxicol ; 30(7): 782-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24615891

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-ß in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue.


Assuntos
Citocinas/metabolismo , Inflamação/etiologia , Pulmão/metabolismo , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Titânio/química , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interferon gama/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Nanomaterials (Basel) ; 12(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457963

RESUMO

Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, lymphatic nodules at the base of the polyps, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling.

12.
Front Oncol ; 11: 594200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123772

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.

13.
Chem Biol Interact ; 347: 109596, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34329616

RESUMO

BACKGROUND: Inhaled nanoparticles (NPs) challenges mobile and immobile barriers in the respiratory tract, which can be represented by type II pneumocytes (immobile) and monocytes (mobile) but what is more important for biological effects, the cell linage, or the type of nanoparticle? Here, we addressed these questions and we demonstrated that the type of NPs exerts a higher influence on biological effects, but cell linages also respond differently against similar type of NPs. DESIGN: Type II pneumocytes and monocytes were exposed to tin dioxide (SnO2) NPs and titanium dioxide (TiO2) NPs (1, 10 and 50 µg/cm2) for 24 h and cell viability, ultrastructure, cell granularity, molecular spectra of lipids, proteins and nucleic acids and cytoskeleton architecture were evaluated. RESULTS: SnO2 NPs and TiO2 NPs are metal oxides with similar physicochemical properties. However, in the absence of cytotoxicity, SnO2 NPs uptake was low in monocytes and higher in type II pneumocytes, while TiO2 NPs were highly internalized by both types of cells. Monocytes exposed to both types of NPs displayed higher number of alterations in the molecular patterns of proteins and nuclei acids analyzed by Fourier-transform infrared spectroscopy (FTIR) than type II pneumocytes. In addition, cells exposed to TiO2 NPs showed more displacements in FTIR spectra of biomolecules than cells exposed to SnO2 NPs. Regarding cell architecture, microtubules were stable in type II pneumocytes exposed to both types of NPs but actin filaments displayed a higher number of alterations in type II pneumocytes and monocytes exposed to SnO2 NPs and TiO2 NPs. NPs exposure induced the formation of large vacuoles only in monocytes, which were not seen in type II pneumocytes. CONCLUSIONS: Most of the cellular effects are influenced by the NPs exposure rather than by the cell type. However, mobile, and immobile barriers in the respiratory tract displayed differential response against SnO2 NPs and TiO2 NPs in absence of cytotoxicity, in which monocytes were more susceptible than type II pneumocytes to NPs exposure.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Monócitos/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Células Epiteliais Alveolares/química , Células Epiteliais Alveolares/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Monócitos/química , Monócitos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Compostos de Estanho/toxicidade , Titânio/química , Titânio/farmacologia , Titânio/toxicidade , Vacúolos/metabolismo
14.
Toxicol Lett ; 322: 111-119, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981686

RESUMO

The increasing concern of possible adverse effects on human health derived from occupational engineered nanomaterials (ENMs) exposure is an issue addressed by entities related to provide guidelines and/or protocols for ENMs regulation. Here we analysed 17 entities from America, Europe and Asia, and some of these entities provide limits of exposure extrapolated from the non-nanosized counterparts of ENMs. The international landscape shows that recommendations are mostly made for metal oxide based ENMs and tonnage is one of the main criteria for ENMs registration, however, sub-nanometric ENMs are emerging and perhaps a novel category of ENMs will appear soon. We identify that besides the lack of epidemiological evidence of ENMs toxicity in humans and difficulties in analysing the toxicological data derived from experimental models, the lack of information on airborne concentrations of ENMs in occupational settings is an important limitation to improve the experimental designs. The development of regulations related to ENMs exposure would lead to provide safer work places for ENMs production without delaying the nanotechnology progress but will also help to protect the environment by taking opportune and correct measures for nanowaste, considering that this could be a great environmental problem in the coming future.


Assuntos
Nanoestruturas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Animais , Relação Dose-Resposta a Droga , Guias como Assunto , Humanos , Nível de Efeito Adverso não Observado , Exposição Ocupacional/legislação & jurisprudência , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/normas , Saúde Ocupacional/legislação & jurisprudência , Saúde Ocupacional/normas , Formulação de Políticas , Medição de Risco , Fatores de Risco , Níveis Máximos Permitidos
15.
Toxicol In Vitro ; 65: 104798, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32084520

RESUMO

Air Liquid Interface (ALI) system has emerged as a useful tool for toxicity evaluation of nanomaterials related to inhalation since the system mimics the aerosol exposure. We compared the biological responses of lung epithelial cells exposed to titanium dioxide (TiO2) nanofibers and nanoparticles in ALI and submerged cell cultures systems. Cells were exposed to 2 and 10 µg/cm2 for 24 h, 48 h and 72 h and LDH release, TiO2 internalization, DNA-double strand breaks (DSBs) and ROS production were assessed. LDH release was similar in both systems and particles had higher cytoplasmic uptake in submerged systems. Both TiO2 types were located in the cytoplasm but nanofibers had nuclear uptake regardless to the system tested. Cells exposed to TiO2 nanofibers had higher DSBs in the ALI system than in submerged cell cultures but cells exposed to TiO2 nanoparticles had similar DSBs in both systems. ROS production was higher in cells exposed to TiO2 nanofibers compared to cells exposed to TiO2 nanoparticles. In conclusion, cytotoxicity of lung epithelial cells was similar in ALI or submerged cell cultures, however cells exposed to TiO2 nanofibers displayed higher toxicity than cells exposed to TiO2 nanoparticles.


Assuntos
Técnicas de Cultura de Células/métodos , Pulmão/citologia , Nanofibras/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Células A549 , Ar , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Nanofibras/química , Nanopartículas/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Titânio/química
16.
Toxicology ; 442: 152545, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755642

RESUMO

The Organisation for Economic Co-operation and Development has listed thirteen engineered nanomaterials (ENM) in order to investigate their toxicity on human health. Silicon dioxide (SiO2) and titanium dioxide (TiO2) are included on that list and we added indium tin oxide (ITO) nanoparticles (NPs) to our study, which is not listed on OECD suggested ENM to be investigated, however ITO NPs has a high potential of industrial production. We evaluate the physicochemical properties of SiO2 NPs (10-20 nm), TiO2 nanofibers (NFs; 3 µm length) and ITO NPs (<50 nm) and the impact of protein-corona formation on cell internalization. Then, we evaluated the toxicity of uncoated ENM on human lung epithelial cells exposed to 10 and 50 µg/cm2 for 24 h. TiO2 NFs showed the highest capability to adsorb proteins onto the particle surface followed by SiO2 NPs and ITO NPs after acellular incubation with fetal bovine serum. The protein adsorption had no impact on Alizarin Red S conjugation, intrinsic properties for reactive oxygen (ROS) formation or cell uptake for all types of ENM. Moreover, TiO2 NFs induced highest cell alterations in human lung epithelial cells exposed to 10 and 50 µg/cm2 while ITO NPs induced moderated cytotoxicity and SiO2 NPs caused even lower cytotoxicity under the same conditions. DNA, proteins and lipids were mainly affected by TiO2 NFs followed by SiO2 NPs with toxic effects in protein and lipids while limited variations were detected after exposure to ITO NPs on spectra analyzed by Fourier Transform Infrared Spectroscopy.


Assuntos
Nanoestruturas/química , Nanoestruturas/toxicidade , Coroa de Proteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Tamanho Celular , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Células Epiteliais/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Dióxido de Silício/toxicidade , Propriedades de Superfície , Titânio/química , Titânio/metabolismo , Titânio/toxicidade , Cicatrização/efeitos dos fármacos
17.
Chem Biol Interact ; 323: 109063, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32224134

RESUMO

Exposure to TiO2 NPs induces several cellular alterations after NPs uptake including disruption of cytoskeleton that is crucial for lung physiology but is not considered as a footprint of cell damage. We aimed to investigate cytoskeleton disturbances and the impact on cell migration induced by an acute TiO2 NPs exposure (24 h) and the recovery capability after 6 days of NPs-free treatment, which allowed investigating if cytoskeleton damage was reversible. Exposure to TiO2 NPs (10 µg/cm2) for 24 h induced a decrease 20.2% and 25.1% in tubulin and actin polymerization. Exposure to TiO2 NPs (10 µg/cm2) for 24 h followed by 6 days of NPs-free had a decrease of 26.6% and 21.3% in tubulin and actin polymerization, respectively. The sustained exposure for 7 days to 1 µg/cm2 and 10 µg/cm2 induced a decrease of 22.4% and 30.7% of tubulin polymerization respectively, and 28.7% and 46.2% in actin polymerization. In addition, 24 h followed 6 days of NPs-free exposure of TiO2 NPs (1 µg/cm2 and 10 µg/cm2) decreased cell migration 40.7% and 59.2%, respectively. Cells exposed (10 µg/cm2) for 7 days had a decrease of 65.5% in cell migration. Ki67, protein surfactant B (SFTPB) and matrix metalloprotease 2 (MMP2) were analyzed as genes related to lung epithelial function. The results showed a 20% of Ki67 upregulation in cells exposed for 24 h to 10 µg/cm2 TiO2 NPs while a downregulation of 20% and 25.8% in cells exposed to 1 µg/cm2 and 10 µg/cm2 for 24 h followed by 6 days of NPs-free exposure. Exposure to 1 µg/cm2 and 10 µg/cm2 for 24 h and 7 days upregulates SFTPB expression in 53% and 59% respectively, MMP2 expression remain unchanged. In conclusion, exposure of TiO2 NPs affected cytoskeleton of lung epithelial cells irreversibly but this damage was not cumulative.


Assuntos
Citoesqueleto/patologia , Células Epiteliais/patologia , Pulmão/patologia , Nanopartículas/toxicidade , Titânio/toxicidade , Células A549 , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Tamanho Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Endocitose , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Antígeno Ki-67/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas/ultraestrutura , Polimerização , Precursores de Proteínas/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Tubulina (Proteína)/metabolismo
18.
Food Chem Toxicol ; 146: 111786, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33038453

RESUMO

Food-grade titanium dioxide (E171) is a white additive widely used in solid and liquid food products. There is still debate about E171 toxic effects after oral consumption since this additive is deposited in colon, liver, spleen, testis and brain. The consumption of E171 commonly occurs with Western diets that are characterized by a high fat content. Thus, E171 could worsen adverse effects associated with a high fat diet (HFD) such as anxiety, colon diseases and testicular damage. We aimed to evaluate the effects of E171 on anxiety-like behavior, colon, liver and testis and to analyze if the administration of a HFD could exacerbate adverse effects. E171 was administered at ~5 mg/kgbw by drinking water for 16 weeks and mice were fed with a Regular Diet or a HFD. E171 promoted anxiety, induced adenomas in colon, goblet cells hypertrophy and hyperplasia and mucins overexpression, but had no toxic effects on testicular tissue or spermatozoa in regular diet fed-mice. Additionally, E171 promoted microvesicular steatosis in liver in HFD fed-mice and the only HFD administration decreased the spermatozoa concentration and motility. In conclusion, E171 administration increases the number of adenomas in colon, induces hypertrophy and hyperplasia in goblet cells and microvesicular steatosis.


Assuntos
Adenoma/induzido quimicamente , Ansiedade/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Dieta Hiperlipídica , Fígado Gorduroso/induzido quimicamente , Alimentos , Células Caliciformes/efeitos dos fármacos , Hiperplasia/induzido quimicamente , Titânio/farmacologia , Animais , Células Caliciformes/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Titânio/administração & dosagem , Titânio/toxicidade
19.
Cancers (Basel) ; 10(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235866

RESUMO

Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor⁻stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1-/- mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1-/- mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1-/- mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1-/- mice showed increased accumulation of Ly6G⁺Ly6C-CD11b⁺ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation.

20.
Colloids Surf B Biointerfaces ; 162: 193-201, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190471

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle.


Assuntos
Membrana Corioalantoide/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Nanopartículas Metálicas/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Animais , Biomarcadores/metabolismo , Bovinos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/metabolismo , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Feto , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , NF-kappa B/genética , NF-kappa B/metabolismo , Osteogênese/genética , Tamanho da Partícula , Titânio/sangue , Titânio/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA