Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 19(3): e1011174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877739

RESUMO

Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 µM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Masculino , Actinas/metabolismo , Parasitos/metabolismo , Citoesqueleto de Actina/metabolismo , Culicidae/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo
2.
Pestic Biochem Physiol ; 190: 105317, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740333

RESUMO

Cell penetrating peptides (CPPs) are small peptides defined by their ability to deliver molecular cargo into cells. While the subject of frequent investigation for pharmaceutical drug delivery, little consideration has been given to the possibility of CPPs for use as insecticides or insecticide enhancers. Here, we characterize the entry of four fluorescently tagged CPPs into two insect cell lines and dissected midgut tissues in terms of both total quantity and mode of penetration. Fluorescent microscopy showed that substantial amounts of CPPs penetrate the plasma membrane via endosomal uptake in ovarian (Sf9) and midgut derived (AW1) lepidopteran cells and that this process was sensitive to selected endocytosis inhibitors. Differences in the quantity of uptake was observed between CPPs, and further differences were found in the ability CPP-1838 to efficiently penetrate membranes through passive diffusion. These findings were extended to primary midgut derived cells and dissected tissues suggesting that CPPs show a preference for goblet cells and that CPP-1838 shows far higher rates of penetration. CPP-1838 thus shows extraordinary abilities to penetrate cells efficiency in both a diffusional and endocytotic manner. From these results more sophisticated delivery methods based on the utilization of CPPs can be developed.


Assuntos
Peptídeos Penetradores de Células , Animais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Transporte Biológico , Membrana Celular , Sistemas de Liberação de Medicamentos , Insetos
3.
Mol Cell Proteomics ; 19(12): 1986-1997, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883804

RESUMO

Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Gametogênese , Células Germinativas/metabolismo , Masculino , Camundongos , Proteômica , Frações Subcelulares/metabolismo , Vesículas Transportadoras/metabolismo
4.
Br J Clin Pharmacol ; 86(3): 505-516, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495968

RESUMO

AIMS: The risk of potential harms prompted the UK government to introduce the Psychoactive Substances Act in 2016. The aim of the present study was to evaluate the impact and effectiveness of this new legislation on patterns of novel psychoactive substance (NPS) awareness, use, experiences and risk awareness in a self-selected sample of UK consumers to inform education and policy. METHODS: The Bristol Online Survey was advertised on the Bluelight drug forum and social media Facebook pages and University email between 7 January and 7 February 2015 (168 responses) and 9 March to 18 September 2017 (726 responses). UK country of residence responses were extracted for analysis (SPSS). RESULTS: In a predominantly university-educated, young (< 25 years) self-selecting sample, 1 year after introduction of the legislation, NPS use (in males, under 18s, those educated to school/college level, P < .001) has increased, whilst health risk awareness has not changed and remains poor. Users are switching to sourcing NPSs via street dealers (49%) and the darknet (31%) and showing an increase in preference for the herbal NPS Salvia divinorum (P < .05). The main reasons for NPS use remain the influence of friends (69%) in a social setting and to get high (76%) usually in combination with alcohol, cannabis or ecstasy. CONCLUSION: Regulation alone, so far, has not impacted on health risk awareness, NPS drug demand and culture in our UK survey sample. Alongside regulation, NPS health promotion education (particularly in schools, colleges) is needed that addresses resilience and both the risks and beneficial effects of NPS.


Assuntos
Cannabis , Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Drogas Ilícitas/efeitos adversos , Masculino , Psicotrópicos/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Inquéritos e Questionários , Reino Unido/epidemiologia
5.
Hum Psychopharmacol ; 32(3)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485125

RESUMO

OBJECTIVE: This survey investigated the level of public awareness, preference, and motivation of novel psychoactive substances (NPS) use as well as knowledge of potential associated health risks. METHODS: A Bristol Online Survey was advertised through social media and a drug forum "Bluelight" between January 7 and February 7, 2015. RESULTS: Responses were received from 17 countries, mainly from Europe. Most responses (83%) came from university educated students. Two-thirds (65%) of the 168 respondents were aware of NPS. Awareness was significantly increased in those with bisexual or homosexual orientation (p < .05) and those in employment (p < .05). Fourteen percent of the 168 respondents were users of NPS, and use was significantly affected by age and employment (p < .01) but unaffected by level of education (p > .05). Nearly half of the NPS users perceived NPS to carry either a low risk to health (20%) or did not know whether or not they posed a health risk (29%). CONCLUSIONS: These survey data indicate that awareness of NPS and, importantly, perception of the potential health risks associated with NPS use is lacking. NPS awareness and use is higher in those in employment but is unaffected by level of education. This highlights the need for targeted drugs education intervention by policy-makers in schools and universities.


Assuntos
Conscientização , Conhecimentos, Atitudes e Prática em Saúde , Inquéritos Epidemiológicos/métodos , Internacionalidade , Percepção , Psicotrópicos/efeitos adversos , Adolescente , Adulto , Feminino , Inquéritos Epidemiológicos/estatística & dados numéricos , Humanos , Drogas Ilícitas/efeitos adversos , Internet/estatística & dados numéricos , Masculino , Psicotrópicos/uso terapêutico , Adulto Jovem
6.
Exp Parasitol ; 181: 82-87, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803903

RESUMO

Actin has important roles in Plasmodium parasites but its exact function in different life stages is not yet fully elucidated. Here we report the localization of ubiquitous actin I in gametocytes of the rodent model parasite P. berghei. Using an antibody specifically recognizing F-actin and deconvolution microscopy we detected actin I in a punctate pattern in gametocytes. 3D-Structured Illumination Microscopy which allows sub-diffraction limit imaging resolved the signal into structures of less than 130 nm length. A portion of actin I was soluble, but the protein was also found complexed in a stabilized form which could only be completely solubilized by treatment with SDS. An additional population of actin was pelleted at 100 000 × g, consistent with F-actin. Our results suggest that actin in this non-motile form of the parasite is present in short filaments cross-linked to other structures in a cytoskeleton.


Assuntos
Actinas/análise , Plasmodium berghei/química , Actinas/imunologia , Animais , Antimaláricos/farmacologia , Atovaquona/farmacologia , Depsipeptídeos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/imunologia , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento
7.
Cell Microbiol ; 17(3): 355-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25262869

RESUMO

Gametogenesis is the earliest event after uptake of malaria parasites by the mosquito vector, with a decisive impact on colonization of the mosquito midgut. This process is triggered by a drop in temperature and contact with mosquito molecules. In a few minutes, male and female gametocytes escape from the host erythrocyte by rupturing the parasitophorous vacuole and the erythrocyte membranes. Electron-dense, oval-shaped organelles, the osmiophilic bodies (OB), have been implicated in the egress of female gametocytes. By comparative electron microscopy and electron tomography analyses combined with immunolocalization experiments, we here define the morphological features distinctive of male secretory organelles, hereafter named MOB (male osmiophilic bodies). These organelles appear as club-shaped, electron-dense vesicles, smaller than female OB. We found that a drop in temperature triggers MOB clustering, independently of exposure to other stimuli. MDV1/PEG3, a protein associated with OB in Plasmodium berghei females, localizes to both non-clustered and clustered MOB, suggesting that clustering precedes vesicle discharge. A P. berghei mutant lacking the OB-resident female-specific protein Pbg377 displays a dramatic reduction in size of the OB, accompanied by a delay in female gamete egress efficiency, while female gamete fertility is not affected. Immunolocalization experiments indicated that MDV1/PEG3 is still recruited to OB-remnant structures.


Assuntos
Organelas/ultraestrutura , Plasmodium berghei/ultraestrutura , Animais , Tomografia com Microscopia Eletrônica , Feminino , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Organelas/química , Plasmodium berghei/química , Proteínas de Protozoários/análise
8.
Parasitol Res ; 115(8): 3261-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225004

RESUMO

Plasmodium parasites have two actin isoforms. Actin I is ubiquitously expressed, while the second actin isoform is expressed in the sexual stages and ookinetes. Reverse genetic analysis revealed two phenotypes in parasites lacking the protein: a block in male gametogenesis (exflagellation) and a second phenotype in oocyst development, dependent upon the expression of the gene in female gametocytes. Here, we report that the genetic complementation of two independent mutants lacking actin II does not fully restore wild-type function. Constructs were integrated in the c-rrna locus, previously used for expression of transgenes, in order to determine the dependence of expression on actin II flanking genomic regions. Partial restoration of male gametogenesis was achieved when the transgene contained, in addition to the coding region, 1.2 kb upstream of the actin II open reading frame. Another transgene, which comprised 2.7 kb of actin II 5' flanking regions and the cognate 3' downstream sequence, fully restored exflagellation. However, in both complemented strains, oocyst development was severely impaired compared to the WT. These data suggest that male gametocyte expression of actin II is dependent upon extensive flanking regions, while female expression requires even longer genomic sequences for correct expression of the gene.


Assuntos
Actinas/genética , Regulação da Expressão Gênica , Plasmodium berghei/genética , Actinas/metabolismo , Animais , Feminino , Genômica , Masculino , Dados de Sequência Molecular , Oocistos/metabolismo , Fases de Leitura Aberta , Plasmodium berghei/metabolismo , Regiões Promotoras Genéticas
9.
Cell Microbiol ; 16(5): 751-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24471657

RESUMO

Malaria parasites have two actin isoforms, ubiquitous actin1 and specialized actin2. Actin2 is essential for late male gametogenesis, prior to egress from the host erythrocyte. Here, we examined whether the two actins fulfil overlapping functions in Plasmodium berghei. Replacement of actin2 with actin1 resulted in partial complementation of the defects in male gametogenesis and, thus, viable ookinetes were formed, able to invade the midgut epithelium and develop into oocysts. However, these remained small and their DNA was undetectable at day 8 after infection. As a consequence sporogony did not occur, resulting in a complete block of parasite transmission. Furthermore, we show that expression of actin2 is tightly controlled in female stages. The actin2 transcript is translationally repressed in female gametocytes, but translated in female gametes. The protein persists until mature ookinetes; this expression is strictly dependent on the maternally derived expression. Genetic crosses revealed that actin2 functions at an early stage of ookinete formation and that parasites lacking actin2 are unable to undergo sporogony in the mosquito midgut. Our results provide insights into the specialized role of actin2 in Plasmodium development in the mosquito and suggest that the two actin isoforms have distinct biological functions.


Assuntos
Actinas/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/genética , Actinas/genética , Animais , Cruzamentos Genéticos , Culicidae/parasitologia , Teste de Complementação Genética , Mucosa Intestinal/parasitologia , Plasmodium berghei/citologia , Esporos de Protozoários/citologia
10.
BMC Genomics ; 15: 1038, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25432596

RESUMO

BACKGROUND: Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international "Anopheles Genomes Cluster Consortium" project (a.k.a. "16 Anopheles genomes project") was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA). RESULTS: Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were "pre-genomic era" sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles. CONCLUSIONS: Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained.


Assuntos
Anopheles/genética , Genoma de Inseto , Família Multigênica , RNA não Traduzido/genética , Animais , Anopheles/classificação , Sequência de Bases , MicroRNAs/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética , RNA não Traduzido/química , Alinhamento de Sequência
11.
Cell Microbiol ; 15(8): 1438-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23461714

RESUMO

Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress.


Assuntos
Membrana Eritrocítica/parasitologia , Células Germinativas/metabolismo , Perforina/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Fenótipo , Plasmodium berghei/efeitos dos fármacos , Saponinas/farmacologia , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/efeitos dos fármacos , Cauda do Espermatozoide/fisiologia , Cauda do Espermatozoide/ultraestrutura
12.
Vaccine ; 42(3): 556-563, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182460

RESUMO

OBJECTIVE: In 2021, thrombosis with thrombocytopenia syndrome (TTS) was confirmed by the European Medicines Agency (EMA) as a rare side effect of the COVID-19 adenovirus vector vaccines Vaxzevria® and Jcovden®. This study aimed to describe the public's knowledge of TTS and how it affected the willingness to be vaccinated with COVID-19 vaccines and other vaccines in six European countries. METHODS: From June to October of 2022, a multi-country cross-sectional online survey was conducted in Denmark, Greece, Latvia, Netherlands, Portugal, and Slovenia. The minimum target of participants to be recruited was based on the size of the country's population. The results were analysed descriptively. RESULTS: In total, 3794 respondents were included in the analysis; across the six countries, 33.3 %-68.3 % reported being familiar with signs and symptoms of TTS, although 3.1-61.4 % of those were able to identify the symptoms correctly. The reported changes in willingness to be vaccinated against COVID-19 and with other vaccines varied per country. The largest reported change in the willingness to be vaccinated with Vaxzevria® and Jcovden® was observed in Denmark (61.2 %), while the willingness to be vaccinated with other COVID-19 vaccines changed most in Slovenia (30.4 %). The smallest decrease in willingness towards future vaccination against COVID-19 was reported in the Netherlands (20.9 %) contrasting with the largest decrease observed in Latvia (69.1 %). CONCLUSION: Knowledge about TTS seemed to have influenced the public's opinion in Europe resulting in less willingness to be vaccinated with Vaxzevria® and Jcovden®. Willingness for vaccination against COVID-19 with other vaccines and widespread use of vaccines to prevent other diseases also differed and seemed to be determined by the approaches taken by national health authorities when reacting to and communicating about COVID-19 vaccination risks. Further investigation of optimal risk communication strategies is warranted.


Assuntos
COVID-19 , Trombocitopenia , Trombose , Humanos , Vacinas contra COVID-19 , Estudos Transversais , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Vacinação , Adenoviridae/genética
13.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568720

RESUMO

In most lymphomas, p53 signaling pathway is inactivated by various mechanisms independent to p53 gene mutations or deletions. In many cases, p53 function is largely regulated by alterations in the protein abundance levels by the action of E3 ubiquitin-protein ligase MDM2, targeting p53 to proteasome-mediated degradation. In the present study, an integrating transcriptomics and proteomics analysis was employed to investigate the effect of p53 activation by a small-molecule MDM2-antagonist, nutlin-3a, on three lymphoma cell models following p53 activation. Our analysis revealed a system-wide nutlin-3a-associated effect in all examined lymphoma types, identifying in total of 4037 differentially affected proteins involved in a plethora of pathways, with significant heterogeneity among lymphomas. Our findings include known p53-targets and novel p53 activation effects, involving transcription, translation, or degradation of protein components of pathways, such as a decrease in key members of PI3K/mTOR pathway, heat-shock response, and glycolysis, and an increase in key members of oxidative phoshosphorylation, autophagy and mitochondrial translation. Combined inhibition of HSP90 or PI3K/mTOR pathway with nutlin-3a-mediated p53-activation enhanced the apoptotic effects suggesting a promising strategy against human lymphomas. Integrated omic profiling after p53 activation offered novel insights on the regulatory role specific proteins and pathways may have in lymphomagenesis.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38000094

RESUMO

Malaria, an infectious disease with a tremendous impact on human health is caused by Plasmodium parasites, and transmitted by Anopheles mosquitoes. New approaches to control the disease involve transmission blocking strategies aiming to target the parasite in the mosquito. Here, we investigated the putative inhibitory activity of essential oils and their components on the early mosquito stages of the parasite. We employed an in vitro assay of gametocyte-to-ookinete development of the rodent model parasite Plasmodium berghei combined with high content screening. 60 essential oils with known composition were tested. The results revealed that fifteen EOs had inhibitory activity. Furthermore, a machine learning approach was used to identify the putative inhibitory components. Five of the most important chemical components indicated by the machine learning-based models were actually confirmed by the experimental approach. This combined approach was used for the first time to identify the potential transmission blocking activity of essential oils and single components at the zygote and ookinete stages.


Assuntos
Anopheles , Malária , Parasitos , Animais , Humanos , Malária/parasitologia , Plasmodium berghei , Anopheles/parasitologia
15.
Cell Microbiol ; 13(11): 1714-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21790945

RESUMO

Male gametogenesis occurs directly after uptake of malaria parasites by the mosquito vector and leads to the release of eight nucleated flagellar gametes. Here, we report that one of the two parasite actin isoforms, named actin II, is essential for this process. Disruption of actin II in Plasmodium berghei resulted in viable asexual blood stages, but male gametogenesis was specifically inhibited. Upon activation, male gametocyte DNA was replicated normally and axonemes assembled, but egress from the host cell was inhibited, and axoneme motility abolished. The major actin isoform, actin I, displayed dual localization to the cytoplasm and the nucleus in male gametocytes. After activation actin I was found to be restricted to the cytoplasm. In actII(-) mutant parasites, this re-localization was abolished and actin I remained in both cellular compartments. These findings reveal vital and pleiotropic functions for the actin II isoform in male gametogenesis of the malaria parasite.


Assuntos
Actinas/metabolismo , Flagelos/fisiologia , Plasmodium berghei/fisiologia , Actinas/genética , Sequência de Aminoácidos , Animais , Núcleo Celular/química , Análise por Conglomerados , Culicidae/parasitologia , Citoplasma/química , Técnicas de Inativação de Genes , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
16.
J Biomed Inform ; 44(1): 42-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20363364

RESUMO

We are developing a set of ontologies dealing with vector-borne diseases as well as the arthropod vectors that transmit them. After building ontologies for mosquito and tick anatomy we continued this project with an ontology of insecticide resistance followed by a series of ontologies that describe malaria as well as physiological processes of mosquitoes that are relevant to, and involved in, disease transmission. These will later be expanded to encompass other vector-borne diseases as well as non-mosquito vectors. The aim of the whole undertaking, which is worked out in the frame of the international IDO (Infectious Disease Ontology) project, is to provide the community with a set of ontological tools that can be used both in the development of specific databases and, most importantly, in the construction of decision support systems (DSS) to control these diseases.


Assuntos
Vetores Artrópodes , Transmissão de Doença Infecciosa , Informática Médica , Vocabulário Controlado , Animais , Sistemas de Gerenciamento de Base de Dados , Tomada de Decisões Assistida por Computador , Malária/parasitologia
17.
Mol Biochem Parasitol ; 246: 111415, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537287

RESUMO

Efficient reverse genetics approaches are critical for the study of many organisms. The CRISPR/Cas9 gene editing system has led to a plethora of new tools for geneticists. Here, we successfully established a simplified CRISPR/Cas9 system for the malaria model parasite Plasmodium berghei. The homologous directed repair (HDR) template is provided as a linear template with homologous arms of 600-700bp while the CRISPR elements sgRNA and Cas9 are encoded from a single plasmid utilizing the Ribozyme-Guide-Ribozyme (RGR) expression strategy. Our approach eliminates the need for negative selection markers since the plasmid cannot be incorporated into the genome. As a test case we inserted the FLAG encoding sequence into the ACT2 locus using this new approach. We showed that the genetic modification of this locus had no adverse effects on the completion of the P. berghei life cycle, including transmission through the mosquito.


Assuntos
Edição de Genes , RNA Catalítico , Animais , Sistemas CRISPR-Cas , Edição de Genes/métodos , Plasmídeos , Plasmodium berghei/genética , RNA Catalítico/genética
18.
iScience ; 24(5): 102473, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113819

RESUMO

The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.

19.
Mol Cell Biol ; 41(8): e0014921, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33972395

RESUMO

ETS2 repressor factor (ERF) haploinsufficiency causes late-onset craniosynostosis (CRS) (OMIM entry 600775; CRS4) in humans, while in mice Erf insufficiency also leads to a similar multisuture synostosis phenotype preceded by mildly reduced calvarium ossification. However, neither the cell types affected nor the effects per se have been identified so far. Here, we establish an ex vivo system for the expansion of suture-derived mesenchymal stem and progenitor cells (sdMSCs) and analyze the role of Erf levels in their differentiation. Cellular data suggest that Erf insufficiency specifically decreases osteogenic differentiation of sdMSCs, resulting in the initially delayed mineralization of the calvarium. Transcriptome analysis indicates that Erf is required for efficient osteogenic lineage commitment of sdMSCs. Elevated retinoic acid catabolism due to increased levels of the cytochrome P450 superfamily member Cyp26b1 as a result of decreased Erf levels appears to be the underlying mechanism leading to defective differentiation. Exogenous addition of retinoic acid can rescue the osteogenic differentiation defect, suggesting that Erf affects cranial bone mineralization during skull development through retinoic acid gradient regulation.


Assuntos
Suturas Cranianas/metabolismo , Craniossinostoses/metabolismo , Osteogênese/fisiologia , Tretinoína/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Craniossinostoses/genética , Camundongos , Osteogênese/genética , Fenótipo , Células-Tronco/metabolismo
20.
BMC Microbiol ; 10: 38, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20141637

RESUMO

BACKGROUND: Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. RESULTS: Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. CONCLUSIONS: Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung.


Assuntos
Biofilmes , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Análise de Variância , Aderência Bacteriana , Criança , Genótipo , Humanos , Microscopia Eletrônica de Varredura , Fenótipo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Técnica de Amplificação ao Acaso de DNA Polimórfico , Infecções Respiratórias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA