Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hematol ; 98(2): 264-271, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588407

RESUMO

Familial forms of monoclonal gammopathy, defined as multiple myeloma (MM) or Monoclonal Gammopathy of Undetermined Significance (MGUS), are relatively infrequent and most series reported in the literature describe a limited number of families. MM rarely occurs in a familial context. MGUS is observed much more commonly, which can in some cases evolve toward full-blown MM. Although recurrent cytogenetic abnormalities have been described in tumor cells of sporadic cases of MM, the pathogenesis of familial MM remains largely unexplained. In order to identify genetic factors predisposing to familial monoclonal gammopathy, the Intergroupe Francophone du Myélome identified 318 families with at least two confirmed cases of monoclonal gammopathy. There were 169 families with parent/child pairs and 164 families with cases in at least two siblings, compatible with an autosomal transmission. These familial cases were compared with sporadic cases who were matched for age at diagnosis, sex and immunoglobulin isotype, with 10 sporadic cases for each familial case. The gender distribution, age and immunoglobulin subtypes of familial cases were unremarkable in comparison to sporadic cases. With a median follow-up of 7.4 years after diagnosis, the percentage of MGUS cases having evolved to MM was 3%. The median overall survival of the 148 familial MM cases was longer than that of matched sporadic cases, with projected values of 7.6 and 16.1 years in patients older and younger than 65 years, respectively. These data suggest that familial cases of monoclonal gammopathy are similar to sporadic cases in terms of clinical presentation and carry a better prognosis.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Criança , Humanos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Paraproteinemias/genética , Paraproteinemias/complicações , Mieloma Múltiplo/patologia , Prognóstico , Aberrações Cromossômicas
2.
PLoS Genet ; 14(2): e1007111, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29389935

RESUMO

The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Mieloma Múltiplo/genética , Linhagem , Estudos de Casos e Controles , Análise Mutacional de DNA , Bases de Dados Genéticas , Família , Feminino , Predisposição Genética para Doença , Variação Genética/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Masculino
3.
Blood Neoplasia ; 1(2)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036705

RESUMO

Waldenström macroglobulinemia (WM) is a rare hematological malignancy. Risk for WM is elevated 20-fold among first-degree relatives of patients with WM. However, the list of variants and genes that cause WM remains incomplete. In this study we analyzed exomes from 64 WM pedigrees for evidence of genetic susceptibility for this malignancy. We determined the frequency of pathogenic (P) or likely pathogenic (LP) variants among patients with WM; performed variant- and gene-level association analyses with the set of 166 WM cases and 681 unaffected controls; and examined the segregation pattern of deleterious variants among affected members in each pedigree. We identified P/LP variants in TREX1 and SAMHD1 (genes that function at the interface between innate immune response, genotoxic surveillance, and DNA repair) segregating in patients with WM from 2 pedigrees. There were additional P/LP variants in cancer-predisposing genes (eg, POT1, RECQL4, PTPN11, PMS2). In variant- and gene-level analyses, no associations were statistically significant after multiple testing correction. On a pathway level, we observed involvement of genes that play a role in telomere maintenance (q-value = 0.02), regulation of innate immune response (q-value = 0.05), and DNA repair (q-value = 0.08). Affected members of each pedigree shared multiple deleterious variants (median, n = 18), but the overlap between the families was modest. In summary, P/LP variants in highly penetrant genes constitute a modest proportion of the deleterious variants; each pedigree is largely unique in its genetic architecture, and multiple genes are likely involved in the etiology of WM.

4.
Blood Cancer J ; 11(4): 74, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854038

RESUMO

Telomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs. prospective). LTL is genetically determined; genome-wide association studies identified 11 SNPs that, combined in a score, can be used as a genetic instrument to measure LTL and evaluate its association with MM risk. This approach has been already successfully attempted in various cancer types but never in MM. We tested the "teloscore" in 2407 MM patients and 1741 controls from the International Multiple Myeloma rESEarch (IMMeNSE) consortium. We observed an increased risk for longer genetically determined telomere length (gdTL) (OR = 1.69; 95% CI 1.36-2.11; P = 2.97 × 10-6 for highest vs. lowest quintile of the score). Furthermore, in a subset of 1376 MM patients we tested the relationship between the teloscore and MM patients survival, observing a better prognosis for longer gdTL compared with shorter gdTL (HR = 0.93; 95% CI 0.86-0.99; P = 0.049). In conclusion, we report convincing evidence that longer gdTL is a risk marker for MM risk, and that it is potentially involved in increasing MM survival.


Assuntos
Mieloma Múltiplo/genética , Homeostase do Telômero , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Polimorfismo de Nucleotídeo Único , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Telômero/genética
7.
Cancer Chemother Pharmacol ; 68(1): 97-105, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20844879

RESUMO

PURPOSE: The need for new treatment options for acute myeloid leukemia (AML) is increasing. AS602868 is a novel investigational drug with reported activity on AML cells. METHODS: We studied gene expression profiles in AML blasts exposed to AS602868 in order to better understand its mechanism of action. We analyzed the in vitro cytotoxicity of AS602868 alone or in combination with daunorubicin, etoposide or cytarabine. To document AS602868-induced IKK2 inhibition in fresh AML cells, a flow cytometry analysis of IκB was performed. Finally, the effect of AS602868 on gene expression in fresh AML cells was analyzed. RESULTS: The results show that AML cells are globally as sensitive to AS602868 as they are to cytarabine, with large interindividual variations. Combinations with conventional antileukemic agents showed enhanced cytotoxic activity in subsets of patients. IKK2 appeared to be effectively inhibited by 100 µM AS602868 in fresh leukemic cells. Gene expression profiling and gene ontology analyses identified several groups of genes induced/inhibited by exposure to AS602868 and/or exhibiting a correlation with sensitivity to this agent in vitro. Of note, the expression of several genes related to immune function was found to be significantly altered after exposure to AS602868. CONCLUSION: These data suggest that AS602868 is cytotoxic against fresh human AML blasts and provide insights regarding the mechanisms of cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Pirimidinas/farmacologia , Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Citarabina/farmacologia , Daunorrubicina/farmacologia , Relação Dose-Resposta a Droga , Etoposídeo/farmacologia , Humanos , Proteínas I-kappa B/metabolismo , Leucemia Mieloide Aguda/patologia , Linfócitos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Pirimidinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA