Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(2): e2794, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484787

RESUMO

Fluctuations in prey abundance, composition, and distribution can impact predators, and when predators and fisheries target the same species, predators become essential to ecosystem-based management. Because of the difficulty in collecting concomitant predator-prey data at appropriate scales in patchy environments, few studies have identified strong linkages between cetaceans and prey, especially across large geographic areas. During summer 2018, a line-transect survey for cetaceans and coastal pelagic species was conducted over the continental shelf and slope of British Columbia, Canada, and the US West Coast, allowing for a large-scale investigation of predator-prey spatial relationships. We report on a case study of humpback whales (Megaptera novaeangliae) and their primary prey-Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and krill-using generalized additive models to explore the relationships between whale abundance on 10-km transect segments and prey metrics. Prey metrics included direct measures of biomass densities on segments and an original hotspot metric. For each prey species, segments in the upper fifth percentile for biomass density (across all segments) were designated hotspots, and whale counts on a segment were evaluated for their relationship to number of hotspot segments (species-specific and multispecies) within 25, 50, or 100 km. Whale abundance was not strongly related to direct measures of biomass densities, whereas models using hotspot metrics were more effective at describing variation in whale abundance, underscoring that evaluating prey at relevant and measurable scales is critical in patchy, dynamic marine environments. Our analysis highlighted differences in the distribution and prey availability for three humpback whale distinct population segments (DPSs) as defined under the US Endangered Species Act, including threatened and endangered DPSs that forage within the California Current Large Marine Ecosystem. These linkages provide insights into which prey species whales may be targeting in different regions and across multiple scales and, consequently, how climatic variability and anthropogenic risks may differentially impact these distinct predator-prey assemblages. By identifying scale-appropriate prey hotspots that co-occur with humpback whale aggregations, and with targeted, consistent prey sampling and estimations of potential consumption rates by whales, these findings can help inform the conservation and management of humpback whales within an ecosystem-based management framework.


Assuntos
Ecossistema , Jubarte , Animais , Estações do Ano , Biomassa , Colúmbia Britânica , Peixes
2.
J Fish Biol ; 95(4): 1116-1124, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31338838

RESUMO

Length-measurement conversions and seasonal mass-length relationships (MLR) for Pacific herring Clupea pallasii, northern anchovy Engraulis mordax, Pacific sardine Sardinops sagax, Pacific mackerel Scomber japonicus and jack mackerel Trachurus symmetricus in the California Current are presented. The conversions between total (LT ), fork (LF ,) and standard lengths (LS ) should facilitate comparisons of data across disciplines and institutions. These equations resulted from an analysis of measurements spanning 14 years and the western seaboard of North America, from the north end of Vancouver Island to the USA-Mexico border. Major-axis regressions were used to calculate reciprocal length-measurement conversions (e.g., LT to LS and LS to LT ) and generalised linear models and ordinary least-squares models were used to create MLRs that account for seasonal variations. The MLR models indicated seasonal differences for all species except C. pallasii, for which there was no multi-season data. Discrepancies between these and published models were examined, along with the suitability and benefit of the various types of models used for length-measurement conversion and MLRs.


Assuntos
Ecossistema , Peixes/fisiologia , Animais , Tamanho Corporal , California , México , Oceano Pacífico , Estações do Ano
3.
Proc Natl Acad Sci U S A ; 109(11): 4175-80, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371604

RESUMO

The oceanographic conditions in the north Pacific have shifted to a colder period, Pacific sardine (Sardinops sagax) biomass has declined precipitously in the California Current, the international sardine fishery is collapsing, and mackerel (Trachurus symmetricus and Scomber japonicus) are thriving. This situation occurred in the mid-1900s, but indices of current oceanographic conditions and the results of our acoustic-trawl surveys indicate it likely is recurring now, perhaps with similar socioeconomic and ecological consequences. Also alarming is the repetition of the fishery's response to a declining sardine stock-progressively higher exploitation rates targeting the oldest, largest, and most fecund fish. Furthermore, our data indicate the recent reproductive condition of sardine is poor, and their productivity is below modeled estimates used to derive the current fishery-exploitation rates. Consequently, the sardine population has been reduced to two cohorts that are unlikely to produce an appreciable new cohort. Thus, a near-term recovery of this important stock is unlikely, depending on the return of warmer oceanographic conditions, reduced pressure from mackerel species, and perhaps the adoption of a more precautionary strategy for managing the residual sardine population.


Assuntos
Temperatura Baixa , Pesqueiros , Peixes/crescimento & desenvolvimento , Previsões , Oceanografia/tendências , Migração Animal/fisiologia , Animais , Biomassa , Ecossistema , Oceano Pacífico , Perciformes/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie
4.
J Acoust Soc Am ; 138(6): 3742-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26723330

RESUMO

Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m(2)) was calculated as a function of insonifying frequency (f = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge.


Assuntos
Acústica , Ecossistema , Modelos Teóricos , Som , Água , Animais , Simulação por Computador , Análise de Elementos Finitos , Peixes , Movimento (Física) , Análise Numérica Assistida por Computador , Espalhamento de Radiação , Fatores de Tempo , Zooplâncton
5.
Sci Rep ; 7(1): 3340, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611365

RESUMO

Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina (Cynoscion othonopterus) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa2, with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.


Assuntos
Comunicação Animal , Biomassa , Perciformes/fisiologia , Comportamento Sexual Animal , Acústica , Animais
6.
J Acoust Soc Am ; 113(3): 1387-94, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12656373

RESUMO

A new method was developed to acoustically measure the density and total scattering cross-section (sigma(t)) or total target strength [TTS = 10log10(sigma(t)/4pi)] of objects in motion in a highly reflective cavity [J. De Rosny and P. Roux, J. Acoust. Soc. Am. 109, 2587-2597 (2001)]. From an ensemble of pulse-echo recordings, the average contribution of the scatterer(s) to the reverberation within the cavity provides a measurement of the scattering mean free path. The latter was shown through theory and experiment to be proportional to the volume of the cavity and inversely proportional the product of the mean sigma(t) and number of scatterers. Here, the TTS measurement uncertainty is characterized using standard metal spheres as references. Theoretical TTS was calculated for multiple copper and tungsten carbide standard spheres (Cu: 60.0 30.05 and 23 mm and WC: 38.1 and 33.4 mm diameters, respectively), using well-described theory for scattering from elastic spheres and the optical theorem. Measurements of TTS were made over a wide bandwidth (30-120 kHz) and compared to their theoretical values. Measurements were made in a corrugated, cylindrical, galvanized-steel tank with 25 or 50 l of fresh water at a temperature of 21 +/- 1 degrees C. The results indicate the method can provide TTS measurements that are accurate to at least 0.4 dB with an average precision of +/-0.7 dB (95% confidence interval). Discussed are the requisite cavity volumes and signal-to-noise ratios for quality measurements of TTS, tank volume, and/or numerical abundance of mobile targets. Also discussed are multiple potential applications of this technique in bioacoustical oceanography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA