Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(43): 29471-82, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25193663

RESUMO

CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.


Assuntos
Monóxido de Carbono/metabolismo , Di-Hidropteridina Redutase/metabolismo , Proteínas de Escherichia coli/metabolismo , Hemeproteínas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/metabolismo , Compostos Organometálicos/metabolismo , Anaerobiose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espaço Intracelular/metabolismo , Ferro/metabolismo , Solubilidade , Sulfatos/farmacologia , Suspensões
2.
Environ Microbiol ; 17(7): 2477-91, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25471524

RESUMO

Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively.


Assuntos
Adaptação Fisiológica , Cobre/metabolismo , Escherichia coli K12/metabolismo , Metilaminas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Dimetilaminas/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Formaldeído/metabolismo , Oxirredutases N-Desmetilantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Vitamina K 2/metabolismo
3.
Sci Rep ; 6: 38879, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934966

RESUMO

Most organisms are exposed to the genotoxic chemical formaldehyde, either from endogenous or environmental sources. Therefore, biology has evolved systems to perceive and detoxify formaldehyde. The frmRA(B) operon that is present in many bacteria represents one such system. The FrmR protein is a transcriptional repressor that is specifically inactivated in the presence of formaldehyde, permitting expression of the formaldehyde detoxification machinery (FrmA and FrmB, when the latter is present). The X-ray structure of the formaldehyde-treated Escherichia coli FrmR (EcFrmR) protein reveals the formation of methylene bridges that link adjacent Pro2 and Cys35 residues in the EcFrmR tetramer. Methylene bridge formation has profound effects on the pattern of surface charge of EcFrmR and combined with biochemical/biophysical data suggests a mechanistic model for formaldehyde-sensing and derepression of frmRA(B) expression in numerous bacterial species.


Assuntos
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/fisiologia , Formaldeído/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Formaldeído/farmacologia , Inativação Metabólica , Interferometria , Modelos Moleculares , Óperon , Regiões Promotoras Genéticas/genética , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Selenometionina/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA