Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 587(7835): 594-599, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239799

RESUMO

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

2.
Chem Rev ; 122(6): 5519-5603, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34989556

RESUMO

Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.


Assuntos
Metais Terras Raras , Nanoestruturas , Metais Terras Raras/química , Nanoestruturas/química
3.
Nano Lett ; 23(7): 3014-3022, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36939681

RESUMO

Herein, we demonstrate video-rate color three-dimensional (3D) volumetric displays using elemental-migration-assisted full-color-tunable upconversion nanoparticles (UCNPs). In the heavily doped NaErF4:Tm-based core@multishell UCNPs, erbium migration was observed. By tailoring this migration through adjustment of the intermediate shell thickness between the core and the sensitizer-doped second shell, red-green orthogonal upconversion luminescence (UCL) was achieved. Furthermore, highly efficient red-green-blue orthogonal UCL and full-color tunability were achieved in the UCNPs through a combination of elemental-migration-assisted color tuning and selective photon blocking. Finally, 3D volumetric displays were fabricated using a UCNP-polydimethylsiloxane composite. More specifically, 3D color images were created and motion pictures based on the expansion, rotation, and up/down movement of the displayed images were realized in the display matrix. Overall, our study provides new insights into upconversion color tuning and the achievement of motion pictures in the UCNP-polydimethylsiloxane composite is expected to accelerate the further development of solid-state full-color 3D volumetric displays.

4.
Angew Chem Int Ed Engl ; 62(52): e202312151, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909102

RESUMO

The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic-inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.

5.
J Am Chem Soc ; 138(49): 15972-15979, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960320

RESUMO

The stringent distance dependence of Förster resonance energy transfer (FRET) has limited the ability of an energy donor to donate excitation energy to an acceptor over a Förster critical distance (R0) of 2-6 nm. This poses a fundamental size constraint (<8 nm or ∼4R0) for experimentation requiring particle-based energy donors. Here, we describe a spatial distribution function model and theoretically validate that the particle size constraint can be mitigated through coupling FRET with a resonant energy migration process. By combining excitation energy migration and surface trapping, we demonstrate experimentally an over 600-fold enhancement over acceptor emission for large nanocrystals (30 nm or ∼15R0) with surface-anchored molecular acceptors. Our work shows that the migration-coupled approach can dramatically improve sensitivity in FRET-limited measurement, with potential applications ranging from facile photochemical synthesis to biological sensing and imaging at the single-molecule level.

6.
Nat Mater ; 14(7): 685-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25849370

RESUMO

The control of the emission properties of synthetic organic molecules through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colours, high quantum efficiencies and efficient energy/charge transfer processes. However, the task of generating excited states with long lifetimes has been met with limited success, owing to the ultrafast deactivation of the highly active excited states. Here, we present a design rule that can be used to tune the emission lifetime of a wide range of luminescent organic molecules, based on effective stabilization of triplet excited states through strong coupling in H-aggregated molecules. Our experimental data revealed that luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores, can be realized under ambient conditions. These results outline a fundamental principle to design organic molecules with extended lifetimes of excited states, providing a major step forward in expanding the scope of organic phosphorescence applications.

7.
Chem Soc Rev ; 44(6): 1479-508, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25693872

RESUMO

Probing the nature of nanocrystalline materials such as the surface state, crystal structure, morphology, composition, optical and magnetic characteristics is a crucial step in understanding their chemical and physical performance and in exploring their potential applications. Upconversion nanocrystals have recently attracted remarkable interest due to their unique nonlinear optical properties capable of converting incident near-infrared photons to visible and even ultraviolet emissions. These optical nanomaterials also hold great promise for a broad range of applications spanning from biolabeling to optoelectronic devices. In this review, we overview the instrumentation techniques commonly utilized for the characterization of upconversion nanocrystals. A considerable emphasis is placed on the analytical tools for probing the optical properties of the luminescent nanocrystals. The advantages and limitations of each analytical technique are compared in an effort to provide a general guideline, allowing optimal conditions to be employed for the characterization of such nanocrystals. Parallel efforts are devoted to new strategies that utilize a combination of advanced emerging tools to characterize such nanosized phosphors.

8.
Nat Mater ; 13(2): 157-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24270581

RESUMO

The applications of lanthanide-doped upconversion nanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb(3+) content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er(3+) with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy.

9.
J Am Chem Soc ; 136(13): 4893-6, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24645923

RESUMO

We report the synthesis of luminescent crystals based on hexagonal-phase NaYF4 upconversion microrods. The synthetic procedure involves an epitaxial end-on growth of upconversion nanocrystals comprising different lanthanide activators onto the NaYF4 microrods. This bottom-up method readily affords multicolor-banded crystals in gram quantity by varying the composition of the activators. Importantly, the end-on growth method using one-dimensional microrods as the template enables facile multicolor tuning in a single crystal, which is inaccessible in conventional upconversion nanoparticles. We demonstrate that these novel materials offer opportunities as optical barcodes for anticounterfeiting and multiplexed labeling applications.


Assuntos
Fluoretos/química , Substâncias Luminescentes/química , Nanopartículas/química , Ítrio/química , Cor , Fluoretos/síntese química , Luminescência , Substâncias Luminescentes/síntese química , Nanopartículas/ultraestrutura
10.
Angew Chem Int Ed Engl ; 53(44): 11702-15, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25204638

RESUMO

The enthusiasm for research on lanthanide-doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.


Assuntos
Elementos da Série dos Lantanídeos/efeitos adversos , Luminescência , Nanopartículas/metabolismo , Humanos , Elementos da Série dos Lantanídeos/análise , Modelos Moleculares
11.
J Am Chem Soc ; 135(34): 12608-11, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23947580

RESUMO

A new type of core-shell upconversion nanoparticles which can be effectively excited at 795 nm has been designed and synthesized through spatially confined doping of neodymium (Nd(3+)) ions. The use of Nd(3+) ions as sensitizers facilitates the energy transfer and photon upconversion of a series of lanthanide activators (Er(3+), Tm(3+), and Ho(3+)) at a biocompatible excitation wavelength (795 nm) and also significantly minimizes the overheating problem associated with conventional 980 nm excitation. Importantly, the core-shell design enabled high-concentration doping of Nd(3+) (~0 mol %) in the shell layer and thus markedly enhanced the upconversion emission from the activators, providing highly attractive luminescent biomarkers for bioimaging without autofluorescence and concern of overheating.

12.
Nat Commun ; 14(1): 3643, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339977

RESUMO

Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.


Assuntos
Fígado Gorduroso , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Antioxidantes/metabolismo , Metabolismo dos Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL
13.
Nat Mater ; 10(12): 968-73, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22019945

RESUMO

Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.


Assuntos
Gadolínio/química , Nanopartículas/química , Transferência de Energia , Elementos da Série dos Lantanídeos/química , Fótons
14.
ACS Appl Mater Interfaces ; 14(24): 28230-28238, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687348

RESUMO

The discovery of X-ray-charged persistent luminescence (PersL) in fluoride nanoparticles enables these materials to emit photons without real-time excitation, which provides a great possibility for the development of new luminescent nanotechnologies. In this work, we developed NaLuF4:Mn nanoparticles with intense green PersL and functionalized surfaces and accordingly achieved time-gated imaging of latent fingerprints (LFPs) with Level 3 details. These surface-modified NaLuF4:Mn nanoparticles exhibited near-spherical morphology, long-lasting emission for several hours, appropriate trap depth distribution, and tight chemical bonding with amino acids from fingerprints, thus greatly improving the accuracy of LFP imaging in a variety of environments. The developed NaLuF4:Mn PersL nanoparticles are expected to find broad applications in the fields of LFP imaging and in vivo biological imaging.


Assuntos
Luminescência , Nanopartículas , Fluoretos , Fótons
15.
J Mater Chem B ; 10(23): 4501-4508, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35615958

RESUMO

Peroxynitrite anion (ONOO-), a product derived from reaction between reactive oxygen species (ROS) and nitric oxide (NO), is considered to be a more toxic reactive species than most ROS for cancer photodynamic therapy (PDT). To promote the PDT effect, a viable method is to develop rational strategies for efficient ONOO- generation at targeted tumor sites. Herein, a heterostructure nanocomposite containing ZnO-coated lanthanide nanoparticles (LnNPs) is reported for ONOO--based PDT. In this nanocomposite, Nd3+-doped LnNPs are employed to realize efficient NIR-light-triggered ROS generation by activating the triplet state of chlorin-e6 (Ce6) photosensitizers via a direct lanthanide-to-triplet sensitization mechanism. Meanwhile, ZnO in the composite catalyzes the decomposition of S-nitrosoglutathione (GSNO) to generate NO in the tumor microenvironment. The coupled system allows the combination of photo-induced ROS and NO to produce ONOO-, leading to drastically promoted cancer cell apoptosis and tumor growth inhibition. This study establishes a new apoptosis-inducing PDT agent, which is potentially active in drug resistant malignancies.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Neoplasias , Fotoquimioterapia , Óxido de Zinco , Ânions/uso terapêutico , Humanos , Elementos da Série dos Lantanídeos/farmacologia , Elementos da Série dos Lantanídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Peroxinitroso , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Microambiente Tumoral
16.
Adv Sci (Weinh) ; 9(26): e2200841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35773238

RESUMO

Nanoparticles are applied as versatile platforms for drug/gene delivery in many applications owing to their long-retention and specific targeting properties in living bodies. However, the delivery mechanism and the beneficial effect of nanoparticle-retention in many organisms remain largely uncertain. Here, the transport and metabolism of mineral nanoparticles in mammary gland during lactation are explored. It is shown that maternal intravenous administration of iron oxide nanoparticles (IONPs; diameter: ≈11.0 nm, surface charge: -29.1 mV, surface area: 1.05 m2 g-1 ) provides elevated iron delivery to mammary gland and increased iron secretion into breast milk, which is inaccessible by classical iron-ion transport approaches such as the transferrin receptor-mediated endocytic pathway. Mammary macrophages and neutrophils are found to play dominant roles in uptake and delivery of IONPs through an unconventional leukocyte-assisted iron secretion pathway. This pathway bypasses the tight iron concentration regulation of liver hepcidin-ferroportin axis and mammary epithelial cells to increase milk iron-ion content derived from IONPs. This work provides keen insight into the metabolic pathway of nanoparticles in mammary gland while offering a new scheme of nutrient delivery for neonate metabolism regulation by using nanosized nutrients.


Assuntos
Nanopartículas , Oligoelementos , Feminino , Humanos , Recém-Nascido , Ferro/metabolismo , Leucócitos , Leite Humano/metabolismo , Oligoelementos/metabolismo
17.
J Am Chem Soc ; 133(50): 20168-71, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107163

RESUMO

We report a novel design, based on a combination of lanthanide-doped upconversion nanoparticles and manganese dioxide nanosheets, for rapid, selective detection of glutathione in aqueous solutions and living cells. In this approach, manganese dioxide (MnO(2)) nanosheets formed on the surface of nanoparticles serve as an efficient quencher for upconverted luminescence. The luminescence can be turned on by introducing glutathione that reduces MnO(2) into Mn(2+). The ability to monitor the glutathione concentration intracellularly may enable rational design of a convenient platform for targeted drug and gene delivery.


Assuntos
Glutationa/metabolismo , Compostos de Manganês/metabolismo , Nanopartículas , Óxidos/metabolismo , Linhagem Celular Tumoral , Humanos , Luminescência
18.
Light Sci Appl ; 10(1): 132, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162833

RESUMO

NaYF4:Ln3+, due to its outstanding upconversion characteristics, has become one of the most important luminescent nanomaterials in biological imaging, optical information storage, and anticounterfeiting applications. However, the large specific surface area of NaYF4:Ln3+ nanoparticles generally leads to serious nonradiative transitions, which may greatly hinder the discovery of new optical functionality with promising applications. In this paper, we report that monodispersed nanoscale NaYF4:Ln3+, unexpectedly, can also be an excellent persistent luminescent (PersL) material. The NaYF4:Ln3+ nanoparticles with surface-passivated core-shell structures exhibit intense X-ray-charged PersL and narrow-band emissions tunable from 480 to 1060 nm. A mechanism for PersL in NaYF4:Ln3+ is proposed by means of thermoluminescence measurements and host-referred binding energy (HRBE) scheme, which suggests that some lanthanide ions (such as Tb) may also act as effective electron traps to achieve intense PersL. The uniform and spherical NaYF4:Ln3+ nanoparticles are dispersible in solvents, thus enabling many applications that are not accessible for traditional PersL phosphors. A new 3-dimensional (2 dimensions of planar space and 1 dimension of wavelength) optical information-storage application is demonstrated by inkjet-printing multicolor PersL nanoparticles. The multicolor persistent luminescence, as an emerging and promising emissive mode in NaYF4:Ln3+, will provide great opportunities for nanomaterials to be applied to a wider range of fields.

19.
Nanoscale ; 13(2): 1069-1076, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393568

RESUMO

The electrical control of two-dimensional (2D) van der Waals ferromagnets is a step forward for the realization of spintronic devices. However, using this approach for practical applications remains challenging due to its volatile memory. Herein, we adopt an alternative strategy, where the bistable ferroelectric switches (P↑ and P↓) of Sc2CO2 (SCO) assist the ferromagnetic states of Cr2Ge2Te6 (CGT) in order to achieve non-volatile memories. Moreover, MXene SCO, being an aided layer in multiferroic CGT/SCO hetero-structures, also modifies the electronic properties of CGT to half metal by its polarized P↓ state. In contrast, the P↑ state does not change the semiconducting nature of CGT. Hence, non-volatile, electrical-controlled switching of ferromagnetic CGT can be engineered by the two opposite ferroelectric states of single layer SCO. Importantly, the magnetic easy axis of CGT switches from in-plane to out-of-plane when the direction of electric polarization of SCO is altered from P↓ to P↑.

20.
Nanoscale ; 13(26): 11552-11560, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190296

RESUMO

Impurity doping has been widely applied in nanomaterial synthesis for modulating the crystallographic phase, morphology, and size of nanocrystalline materials, but mostly by altering thermodynamic equilibria of final products. Here, we report the use of lanthanide dopants to manipulate the growing kinetics of halide perovskite nanocrystals to enable the preparation of highly anisotropic two-dimensional (2D) CsPbBr3-based nanoplatelets with precisely controlled thickness. We demonstrate that the incorporation of trivalent lanthanides increases the energy barrier in growing three-monolayer (3 ML) CsPbBr3 from a 2 ML intermediate. It enables the growth of thermodynamically unfavorable 2 ML CsPbBr3 products through kinetic control. This finding provides a novel approach for dimensional control of perovskite nanocrystals with strong quantum confinement. It offers opportunities to generate deep-blue emitting (at 430 nm) CsPbBr3:Lu3+ nanoplatelets with good structural- and photo-stabilities potentially useful for many applications including light-emitting, lasers, and photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA