RESUMO
Thin films of ZnO nanocrystals are actively pursued as electron-transporting layers (ETLs) in quantum-dot light-emitting diodes (QLEDs). However, the developments of ZnO-based ETLs are highly engineering oriented and the design of ZnO-based ETLs remains empirical. Here, we identified a previously overlooked efficiency-loss channel associated with the ZnO-based ETLs: i.e., interfacial exciton quenching induced by surface-bound ethanol. Accordingly, we developed a general surface-treatment procedure to replace the redox-active surface-bound ethanol with electrochemically inert alkali carboxylates. Characterization results show that the surface treatment procedure does not change other key properties of the ETLs, such as the conductance and work function. Our single-variable experimental design unambiguously demonstrates that improving the electrochemical stabilities of the ZnO ETLs leads to QLEDs with a higher efficiency and longer operational lifetime. Our work provides a crucial guideline to design ZnO-based ETLs for optoelectronic devices.
RESUMO
Quantum-dot light-emitting diodes (QLEDs) are solution-processed electroluminescence devices with great potential as energy-saving, large-area, and low-cost display and lighting technologies. Ideally, the organic hole-transport layers (HTLs) in QLEDs should simultaneously deliver efficient hole injection and transport, effective electron blocking, and robust electrochemical stability. However, it is still challenging for a single HTL to fulfill all these stringent criteria. Here, we demonstrate a general design of doping-bilayer polymer-HTL architecture for stabilizing high-efficiency QLEDs. We show that the bilayer HTLs combining the electrochemical-stable polymer and the electron-blocking polymer unexpectedly increase the hole injection barrier. We mitigated the problem by p-doping of the underlying sublayer of the bilayer HTLs. Consequently, green QLEDs with an unprecedented maximum luminance of 1,340,000 cd m-2 and a record-long operational lifetime (T95 lifetime at an initial luminance of 1000 cd m-2 is 17,700 hours) were achieved. The universality of the strategy is examined in various polymer-HTL systems, providing a general route toward high-performance solution-processed QLEDs.
RESUMO
Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.
RESUMO
Quantum-dot light-emitting diodes (QLEDs) show great potential in next-generation display and lighting technologies. Further reducing the resistances of the high-efficiency QLEDs is critical to improving their luminous efficiencies and lowering their power consumption. However, wet-chemistry methods to improve the conductivities of ZnO-based electron-transport layers (ETLs) often lead to trade-offs in the external quantum efficiencies (EQEs) of QLEDs. Here, we report a facile approach toward highly conductive QLEDs by in situ diffusion of Mg atoms into the ZnO-based ETLs. We demonstrate that thermally evaporated Mg can spread deep into the ZnO-based ETL with a long penetration length, generating oxygen vacancies that promote the electron-transport properties. The Mg-diffused ETLs enhance the conductivities and luminous efficiencies of state-of-the-art QLEDs without sacrificing the EQEs. This strategy is applied to QLEDs with various optical architectures, leading to significant enhancements in the current densities, luminances, and luminous efficiencies. We expect that our method could be extended to other solution-processed LEDs using ZnO-based ETLs.
RESUMO
Quantum-dot light-emitting diodes promise a new generation of high-performance and solution-processed electroluminescent light sources. Understanding the operational degradation mechanisms of quantum-dot light-emitting diodes is crucial for their practical applications. Here, we show that quantum-dot light-emitting diodes may exhibit an anomalous degradation pattern characterized by a continuous increase in electroluminescent efficiency upon electrical stressing, which deviates from the typical decrease in electroluminescent efficiency observed in other light-emitting diodes. Various in-situ/operando characterizations were performed to investigate the evolutions of charge dynamics during the efficiency elevation, and the alterations in electric potential landscapes in the active devices. Furthermore, we carried out selective peel-off-and-rebuild experiments and depth-profiling analyses to pinpoint the critical degradation site and reveal the underlying microscopic mechanism. The results indicate that the operation-induced efficiency increase results from the degradation of electron-injection capability at the electron-transport layer/cathode interface, which in turn leads to gradually improved charge balance. Our work provides new insights into the degradation of red quantum-dot light-emitting diodes and has far-reaching implications for the design of charge-injection interfaces in solution-processed light-emitting diodes.
RESUMO
Nanocrystal-based light-emitting diodes (Nc-LEDs) have immense potential for next-generation high-definition displays and lighting applications. They offer numerous advantages, such as low cost, high luminous efficiency, narrow emission, and long lifetime. However, the external quantum efficiency (EQE) of Nc-LEDs, typically employing isotropic nanocrystals, is limited by the out-coupling factor. Here efficient, bright, and long lifetime red Nc-LEDs based on anisotropic nanocrystals of colloidal quantum wells (CQWs) are demonstrated. Through modification of the substrate's surface properties and control of the interactions among CQWs, a self-assembled layer with an exceptionally high distribution of in-plane transitions dipole moment of 95%, resulting in an out-coupling factor of 37% is successfully spin-coated. The devices exhibit a remarkable peak EQE of 26.9%, accompanied by a maximum brightness of 55 754 cd m-2 and a long operational lifetime (T95 @100 cd m-2 ) over 15 000 h. These achievements represent a significant advancement compared to previous studies on Nc-LEDs incorporating anisotropic nanocrystals. The work is expected to provide a general self-assembly strategy for enhancing the light extraction efficiency of Nc-LEDs based on anisotropic nanocrystals.
RESUMO
Colloidal II-VI group nanoplatelets (NPLs) possess ultranarrow emission line widths, for which they have great promise in achieving the purest display color in solution-processed light-emitting diodes (LEDs). Red NPL-LEDs have shown extremely saturated red color with high efficiency, while the green and blue ones lag far behind. Herein, we report green NPL-LEDs with the purest color in accordance with the Rec. 2020 standard and the peak external quantum efficiency (EQE) of 9.78%. By carefully controlling the aspect ratio, capping ligands, and purifications of CdSe/CdSeS core/alloyed-crown NPLs, NPL films with excellent flatness and unity photoluminescence quantum yields (PLQYs) are realized, laying a solid foundation for improving LED performance. Furthermore, via tuning the carrier injection balance, the record-high EQE for green NPL-LEDs is achieved. The electroluminescence (EL) exhibits an extremely saturated green color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.163 0.786), which demonstrates their great potential in applications of ultrahigh-definition display technology. Our findings would help to further improve the performance of all NPL-LEDs.
RESUMO
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost the photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remain to be inefficient (external quantum efficiency, EQE <5%) due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of assembled nanostructures. Here, we demonstrate efficient electroluminescence from an in situ grown perovskite film composed of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet film is ~84%, which leads to a light-outcoupling efficiency of ~31%, substantially higher than that of isotropic emitters (~23%). In consequence, LEDs with a peak EQE of 23.6% are achieved, representing highly efficient planar perovskite LEDs.
RESUMO
Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T95 > 3800 h at 1000 cd m-2) and blue-emitting light-emitting-diodes (T50 > 10,000 h at 100 cd m-2). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices.
RESUMO
Electroluminescence of colloidal nanocrystals promises a new generation of high-performance and solution-processable light-emitting diodes. The operation of nanocrystal-based light-emitting diodes relies on the radiative recombination of electrically generated excitons. However, a fundamental question-how excitons are electrically generated in individual nanocrystals-remains unanswered. Here, we reveal a nanoscopic mechanism of sequential electron-hole injection for exciton generation in nanocrystal-based electroluminescent devices. To decipher the corresponding elementary processes, we develop electrically-pumped single-nanocrystal spectroscopy. While hole injection into neutral quantum dots is generally considered to be inefficient, we find that the intermediate negatively charged state of quantum dots triggers confinement-enhanced Coulomb interactions, which simultaneously accelerate hole injection and hinder excessive electron injection. In-situ/operando spectroscopy on state-of-the-art quantum-dot light-emitting diodes demonstrates that exciton generation at the ensemble level is consistent with the charge-confinement-enhanced sequential electron-hole injection mechanism probed at the single-nanocrystal level. Our findings provide a universal mechanism for enhancing charge balance in nanocrystal-based electroluminescent devices.
RESUMO
Extensive efforts have been devoted to improving the operational performance of quantum-dot light-emitting diodes (QLEDs). However, the fundamental understanding of the relationship between the design of the hole-injection layer (HIL)/hole-transporting layer (HTL) interface and the operational stability of QLEDs is limited. Here, we demonstrate that in the operation of red QLEDs, the leakage electrons induce in situ electrochemical reduction reactions of the polyfluorene HTLs, which in consequence create trap states and deteriorate charge-transport properties. We invoke an oxygen-plasma treatment on the PEDOT:PSS HILs, resulting in HIL/HTL interfaces with enhanced hole-injection properties. This simple method leads to more efficient exciton generation in the QDs layer and mitigated leakage electron-induced degradation of the HTLs, enabling red-emitting QLEDs with improved operational performance, i.e., high external quantum efficiency of >20.0% at a brightness ranging from 1000 to 10â¯000 cd m-2 and a long T95 operational lifetime of â¼4200 h at 1000 cd m-2.
RESUMO
Quantum-dot light-emitting diodes (QLEDs) promise a new generation of high-performance, large-area, and cost-effective electroluminescent devices for both display and solid-state lighting technologies. However, a positive ageing process is generally required to improve device performance for state-of-the-art QLEDs. Here, it is revealed that the in situ reactions induced by organic acids in the commonly used encapsulation acrylic resin lead to positive ageing and, most importantly, the progression of in situ reactions inevitably results in negative ageing, i.e., deterioration of device performance after long-term shelf storage. In-depth mechanism studies focusing on the correlations between the in situ chemical reactions and the shelf-ageing behaviors of QLEDs inspire the design of an electron-transporting bilayer, which delivers both improved electrical conductivity and suppressed interfacial exciton quenching. This material innovation enables red QLEDs exhibiting neglectable changes of external quantum efficiency (>20.0%) and ultralong operational lifetime (T95 : 5500 h at 1000 nits) after storage for 180 days. This work provides design principles for oxide electron-transporting layers to realize shelf-stable and high-operational-performance QLEDs, representing a new starting point for both fundamental studies and practical applications.
RESUMO
Quantum-dot light-emitting diodes (QLEDs) may combine superior properties of colloidal quantum dots (QDs) and advantages of solution-based fabrication techniques to realize high-performance, large-area, and low-cost electroluminescence devices. In the state-of-the-art red QLED, an ultrathin insulating layer inserted between the QD layer and the oxide electron-transporting layer (ETL) is crucial for both optimizing charge balance and preserving the QDs' emissive properties. However, this key insulating layer demands very accurate and precise control over thicknesses at sub-10 nm level, causing substantial difficulties for industrial production. Here, it is reported that interfacial exciton quenching and charge balance can be independently controlled and optimized, leading to devices with efficiency and lifetime comparable to those of state-of-the-art devices. Suppressing exciton quenching at the ETL-QD interface, which is identified as being obligatory for high-performance devices, is achieved by adopting Zn0.9 Mg0.1 O nanocrystals, instead of ZnO nanocrystals, as ETLs. Optimizing charge balance is readily addressed by other device engineering approaches, such as controlling the oxide ETL/cathode interface and adjusting the thickness of the oxide ETL. These findings are extended to fabrication of high-efficiency green QLEDs without ultrathin insulating layers. The work may rationalize the design and fabrication of high-performance QLEDs without ultrathin insulating layers, representing a step forward to large-scale production and commercialization.
RESUMO
Quantum dots are a unique class of emitters with size-tunable emission wavelengths, saturated emission colors, near-unity luminance efficiency, inherent photo- and thermal- stability and excellent solution processability. Quantum dots have been used as down-converters for back-lighting in liquid-crystal displays to improve color gamut, leading to the booming of quantum-dot televisions in consumer market. In the past few years, efficiency and lifetime of electroluminescence devices based on quantum dots achieved tremendous progress. These encouraging facts foreshadow the commercialization of quantum-dot light-emitting diodes (QLEDs), which promises an unprecedented generation of cost-effective, large-area, energy-saving, wide-color-gamut, ultra-thin and flexible displays. Here we provide a Progress Report, covering interdisciplinary aspects including material chemistry of quantum dots and charge-transporting layers, optimization and mechanism studies of prototype devices and processing techniques to produce large-area and high-resolution red-green-blue pixel arrays. We also identify a few key challenges facing the development of active-matrix QLED displays.
RESUMO
Photonic quantum information requires high-purity, easily accessible, and scalable single-photon sources. Here, we report an electrically driven single-photon source based on colloidal quantum dots. Our solution-processed devices consist of isolated CdSe/CdS core/shell quantum dots sparsely buried in an insulating layer that is sandwiched between electron-transport and hole-transport layers. The devices generate single photons with near-optimal antibunching at room temperature, i.e., with a second-order temporal correlation function at zero delay (g (2)(0)) being <0.05 for the best devices without any spectral filtering or background correction. The optimal g (2)(0) from single-dot electroluminescence breaks the lower g (2)(0) limit of the corresponding single-dot photoluminescence. Such highly suppressed multi-photon-emission probability is attributed to both novel device design and carrier injection/recombination dynamics. The device structure prevents background electroluminescence while offering efficient single-dot electroluminescence. A quantitative model is developed to illustrate the carrier injection/recombination dynamics of single-dot electroluminescence.