Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2271-2281, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270974

RESUMO

To mitigate methane emission from urban natural gas distribution systems, it is crucial to understand local leak rates and occurrence rates. To explore urban methane emissions in cities outside the U.S., where significant emissions were found previously, mobile measurements were performed in 12 cities across eight countries. The surveyed cities range from medium size, like Groningen, NL, to large size, like Toronto, CA, and London, UK. Furthermore, this survey spanned across European regions from Barcelona, ES, to Bucharest, RO. The joint analysis of all data allows us to focus on general emission behavior for cities with different infrastructure and environmental conditions. We find that all cities have a spectrum of small, medium, and large methane sources in their domain. The emission rates found follow a heavy-tailed distribution, and the top 10% of emitters account for 60-80% of total emissions, which implies that strategic repair planning could help reduce emissions quickly. Furthermore, we compare our findings with inventory estimates for urban natural gas-related methane emissions from this sector in Europe. While cities with larger reported emissions were found to generally also have larger observed emissions, we find clear discrepancies between observation-based and inventory-based emission estimates for our 12 cities.


Assuntos
Poluentes Atmosféricos , Gás Natural , Cidades , Gás Natural/análise , Metano/análise , Poluentes Atmosféricos/análise , Londres
2.
Sci Rep ; 9(1): 20033, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882705

RESUMO

Nitrogen dioxide (NO2) is a regulated air pollutant that is of particular concern in many cities, where concentrations are high. Emissions of nitrogen oxides to the atmosphere lead to the formation of ozone and particulate matter, with adverse impacts on human health and ecosystems. The effects of emissions are often assessed through modeling based on inventories relying on indirect information that is often outdated or incomplete. Here we show that NO2 measurements from the new, high-resolution TROPOMI satellite sensor can directly determine the strength and distribution of emissions from Paris. From the observed build-up of NO2 pollution, we find highest emissions on cold weekdays in February 2018, and lowest emissions on warm weekend days in spring 2018. The new measurements provide information on the spatio-temporal distribution of emissions within a large city, and suggest that Paris emissions in 2018 are only 5-15% below inventory estimates for 2011-2012, reflecting the difficulty of meeting NOx emission reduction targets.

3.
Environ Pollut ; 159(10): 2935-46, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21561695

RESUMO

The vertical allocation of emissions has a major impact on results of Chemistry Transport Models. However, in Europe it is still common to use fixed vertical profiles based on rough estimates to determine the emission height of point sources. This publication introduces a set of new vertical profiles for the use in chemistry transport modeling that were created from hourly gridded emissions calculated by the SMOKE for Europe emission model. SMOKE uses plume rise calculations to determine effective emission heights. Out of more than 40,000 different vertical emission profiles 73 have been chosen by means of hierarchical cluster analysis. These profiles show large differences to those currently used in many emission models. Emissions from combustion processes are released in much lower altitudes while those from production processes are allocated to higher altitudes. The profiles have a high temporal and spatial variability which is not represented by currently used profiles.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Movimentos do Ar , Altitude , Monitoramento Ambiental , Europa (Continente) , Modelos Químicos
4.
Proc Natl Acad Sci U S A ; 99(19): 12021-4, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12189212

RESUMO

Microbial production in anoxic wetland rice soils is a major source of atmospheric CH4 the most important non-CO2 greenhouse gas. Much higher CH4 emissions from well managed irrigated rice fields in the wet than in the dry season could not be explained by seasonal differences in temperature. We hypothesized that high CH4 emissions in the wet season are caused by low grain to biomass ratios. In a screenhouse experiment, removing spikelets to reduce the plants' capacity to store photosynthetically fixed C in grains increased CH4 emissions, presumably via extra C inputs to the soil. Unfavorable conditions for spikelet formation in the wet season may similarly explain high methane emissions. The observed relationship between reduced grain filling and CH4 emission provides opportunities to mitigate CH4 emissions by optimizing rice productivity.


Assuntos
Metano/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Agricultura , Poluentes Atmosféricos/metabolismo , Atmosfera/análise , Carbono/metabolismo , Efeito Estufa , Modelos Biológicos , Nitrogênio/metabolismo , Oryza/microbiologia , Fotossíntese , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA