Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hippocampus ; 34(5): 241-260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415962

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Assuntos
Lobo Temporal , Humanos , Lobo Temporal/patologia , Neuroanatomia/métodos , Masculino , Giro Para-Hipocampal/patologia , Giro Para-Hipocampal/diagnóstico por imagem , Feminino , Idoso , Córtex Entorrinal/patologia , Córtex Entorrinal/anatomia & histologia , Laboratórios , Idoso de 80 Anos ou mais
2.
Acta Neuropathol ; 148(1): 37, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227502

RESUMO

The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.


Assuntos
Doença de Alzheimer , Lobo Temporal , Proteínas tau , Humanos , Doença de Alzheimer/patologia , Lobo Temporal/patologia , Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Idoso , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Aprendizado Profundo , Proteínas de Ligação a DNA/metabolismo , Atrofia/patologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos
3.
Alzheimers Dement ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279366

RESUMO

This paper for the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI) provides an overview of magnetic resonance imaging (MRI) of medial temporal lobe (MTL) subregions in ADNI using a dedicated high-resolution T2-weighted sequence. A review of the work that supported the inclusion of this imaging modality into ADNI Phase 3 is followed by a brief description of the ADNI MTL imaging and analysis protocols and a summary of studies that have used these data. This review is supplemented by a new study that uses novel surface-based tools to characterize MTL neurodegeneration across biomarker-defined AD stages. This analysis reveals a pattern of spreading cortical thinning associated with increasing levels of tau pathology in the presence of elevated amyloid beta, with apparent epicenters in the transentorhinal region and inferior hippocampal subfields. The paper concludes with an outlook for high-resolution imaging of the MTL in ADNI Phase 4. HIGHLIGHTS: As of Phase 3, the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) protocol includes a high-resolution T2-weighted MRI scan optimized for imaging hippocampal subfields and medial temporal lobe (MTL) subregions. These scans are processed by the ADNI core to obtain automatic segmentations of MTL subregions and to derive morphologic measurements. More detailed granular examination of MTL neurodegeneration in response to disease progression is achieved by applying surface-based modeling techniques. Surface-based analysis of gray matter loss in MTL subregions reveals increasing and spatially expanding patterns of neurodegeneration with advancing stages of Alzheimer's disease (AD), as defined based on amyloid and tau positron emission tomography biomarkers in accordance with recently proposed criteria. These patterns closely align with post mortem literature on spread of pathological tau in AD, supporting the role of tau pathology in the presence of elevated levels of amyloid beta as the driver of neurodegeneration.

4.
Imaging Neurosci (Camb) ; 2: 1-30, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39301426

RESUMO

Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm3 isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm3 and 0.16 mm3 isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the project webpage (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).

5.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839876

RESUMO

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Emaranhados Neurofibrilares , Lobo Temporal , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Proteínas tau/metabolismo , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Idoso de 80 Anos ou mais , Autopsia , Neuroimagem/métodos , Pessoa de Meia-Idade , Imageamento post mortem
6.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37292729

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA