Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Soft Matter ; 19(42): 8247-8263, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869970

RESUMO

Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 µM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 µM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 µM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 µM and weakly bound its CM with a Kd of 117.6 µM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Lipídeos de Membrana/química , Antibacterianos/química
2.
Mol Cell Biochem ; 476(10): 3729-3744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091807

RESUMO

Here the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 µM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 µM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5-26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3-5.1 mN m-1) and lyse (↑ 15.1-32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1-23) in the N → C direction, with - < µH > increasing overall from circa - 0.8 to - 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.


Assuntos
Proteínas de Anfíbios , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice
3.
J Nanobiotechnology ; 19(1): 19, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430888

RESUMO

BACKGROUND: Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS: The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 µm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS: Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.


Assuntos
Antifúngicos/administração & dosagem , Clatrina/farmacologia , Pulmão/efeitos dos fármacos , Nanopartículas/química , Aspergilose Pulmonar/tratamento farmacológico , Voriconazol/administração & dosagem , Células A549 , Administração por Inalação , Animais , Antifúngicos/química , Sobrevivência Celular , Quitosana , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Pulmão/patologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polímeros/farmacologia , Voriconazol/química
4.
Soft Matter ; 15(20): 4215-4226, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31074477

RESUMO

Modelin-5-CONH2 (M5-NH2) is a synthetic antimicrobial peptide, which was found to show potent activity against Bacillus subtilis (minimum lethal concentration = 8.47 µM) and to bind strongly to membranes of the organism (Kd = 10.44 µM). The peptide adopted high levels of amphiphilic α-helical structure in the presence of these membranes (>50%), which led to high levels of insertion (Δπ ≥ 8.0 mN m-1). M5-NH2 showed high affinity for anionic lipid (Kd = 7.46 µM) and zwitterionic lipid (Kd = 14.7 µM), which drove insertion into membranes formed from these lipids (Δπ = 11.5 and 3.5 mN m-1, respectively). Neutron diffraction studies showed that M5-NH2 inserted into B. subtilis membranes with its N-terminal residue, L16, located 5.5 Å from the membrane centre, in the acyl chain region of these membranes, and promoted a reduction in membrane thickness of circa 1.8 Å or 5% of membrane width. Insertion into B. subtilis membranes by the peptide also promoted other effects associated with membrane thinning, including increases in membrane surface area (Cs-1 decreases) and fluidity (ΔGmix > 0 to ΔGmix < 0). Membrane insertion and thinning by M5-NH2 induced high levels of lysis (>55%), and it is speculated that the antibacterial action of the peptide may involve the toroidal pore, carpet or tilted-type mechanism of membrane permeabilization.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Fenômenos Biofísicos , Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ligação Proteica , Propriedades de Superfície , Termodinâmica
5.
J Acoust Soc Am ; 144(4): 2565, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404457

RESUMO

Acoustic radiation from three commercial pest deterrents and two hair dryers were measured in an anechoic chamber. The deterrents were chosen because the frequency range at which they emit the most energy is either in the very high-frequency sound band (11.2-17.8 kHz) or the ultrasound band (greater than 17.8 kHz). These are sources that may be heard by a subset of the general population, with the young typically having better high frequency sensitivity. A hairdryer reported to increase the frequency of the motor noise above the audible hearing range was compared with a standard hairdryer. The outputs of the deterrents are compared against six international regulations and guidelines for audible and ultrasound exposure. Multiple ambiguities in the application of these guidelines are discussed. These ambiguities could lead to a device being considered as in compliance despite unconventionally high levels. Even if a device measured here meets a guideline, actual exposures can exceed those taken here and may therefore breach guidelines if the listener is closer to the device or reflections increase the exposure level.

6.
Biochemistry ; 55(27): 3735-51, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27336672

RESUMO

Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an improved ability to penetrate (ΔΠ = 6.2 mN m(-1)) and lyse (lysis = 48%) Staphylococcus aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60%), compared to that at pH 7 (ΔΠ = 5.6 mN m(-1) and lysis = 40% at pH 7) where levels of Lys-PG are lower (40%). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism's growth. MH5 killed S. aureus (minimum inhibitory concentration of 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (approximately 45-50%) and showed similarities to the "Carpet" mechanism based on its ability to increase the rigidity (Cs(-1) = 109.94 mN m(-1)) and thermodynamic stability (ΔGmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. On the basis of theoretical analysis, this mechanism might involve the use of a tilted peptide structure, and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R(2) ∼ 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG-induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of hemolytic activity (<2% hemolysis) and merits further investigation as a potential template for development as an antistaphylococcal agent in medically and biotechnically relevant areas.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Lisina/farmacologia , Fosfatidilgliceróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/metabolismo , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ovinos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
7.
Biochim Biophys Acta ; 1848(5): 1111-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25640709

RESUMO

Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8 mN m(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8 m Nm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infectives.


Assuntos
Amidas/farmacologia , Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Amidas/química , Amidas/toxicidade , Proteínas de Anfíbios/química , Proteínas de Anfíbios/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fatores de Tempo
8.
Eur Biophys J ; 45(3): 195-207, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745958

RESUMO

Aurein 2.6-COOH and aurein 3.1-COOH were studied along with their naturally occurring C-terminally amidated analogues. Circular dichroism (CD) and molecular dynamic (MD) simulations were used to study the effects of amidation on the interaction of antimicrobial peptides (AMPs) with lipid bilayers. CD measurements and MD analysis suggested that both peptide analogues were predominantly random coil and adopted low levels of α-helical structure in solution (<30%) and in the presence of a lipid bilayer the peptides formed a stable α-helical structure. In general, amidated analogues have a greater propensity than the non-amidated peptides to form a α-helical structure. MD simulations predicted that aurein 2.6-COOH and aurein 3.1-CHOOH destabilised lipid bilayers from 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphoserine via angled bilayer penetration. They also showed that aurein 2.6-CONH2 and aurein 3.1-CONH2 formed a helix horizontal to the plane of an asymmetric interface.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Simulação de Dinâmica Molecular , Amidas/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química
9.
Bioorg Med Chem ; 24(18): 4241-4245, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27427397

RESUMO

By varying the molecular charge, shape and amphiphilicity of a series of conformationally distinct diarylureas it is possible to control the levels of phospholipid membrane lysis using membranes composed of bacterial lipid extracts. From the data obtained, it appears as though the lysis activity observed is not due to charge, conformation or amphiphilicity in isolation, but that surface aggregation, H-bonding and other factors may also play a part. The work provides evidence that this class of foldamer possesses potential for optimisation into new antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Compostos de Metilureia/farmacologia , Compostos de Fenilureia/farmacologia , Tensoativos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli/efeitos dos fármacos , Compostos de Metilureia/síntese química , Compostos de Metilureia/química , Conformação Molecular , Estrutura Molecular , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química , Polimixina B/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/síntese química , Tensoativos/química
10.
Biochim Biophys Acta ; 1838(11): 2870-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046254

RESUMO

A systematic analysis of the hypothesis of the antimicrobial peptides' (AMPs) cooperative action is performed by means of full atomistic molecular dynamics simulations accompanied by circular dichroism experiments. Several AMPs from the aurein family (2.5,2.6, 3.1), have a similar sequence in the first ten amino acids, are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. It is found that the cooperative effect is stronger in aqueous solution and weaker in TFE. Moreover, in the presence of membranes, the cooperative effect plays an important role in the peptide/lipid bilayer interaction. The action of AMPs is a competition of the hydrophobic interactions between the side chains of the peptides and the hydrophobic region of lipid molecules, as well as the intra peptide interaction. The aureins 2.5-COOH and 2.6-COOH form a hydrophobic aggregate to minimize the interaction between the hydrophobic group and the water. Once that the peptides reach the water/lipid interface the hydrophobic aggregate becomes smaller and the peptides start to penetrate into the membrane. In contrast, aurein 3.1-COOH forms only a transient aggregate which disintegrates once the peptides reached the membrane, and it shows no cooperativity in membrane penetration.

11.
Org Biomol Chem ; 13(29): 8067-70, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26134592

RESUMO

When adorned with n-octyl chains azobenzene is able to disrupt a variety of calcein-loaded phospholipid liposomes. The levels of lysis observed are dependent both on the lipid headgroup and the conformation of the azobenzene compound. In all cases studied, it has been shown that the cis-conformer is more membrane-interactive than the trans-conformer, suggesting that this class of molecule could be optimised for photo-dynamic therapy applications against infectious pathogens.


Assuntos
Compostos Azo/química , Luz , Membranas Artificiais , Fotoquimioterapia , Fluoresceínas/química , Cinética , Lipídeos/química
12.
Biochim Biophys Acta ; 1828(2): 586-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22960040

RESUMO

In this study, an amphibian antimicrobial peptide, aurein 2.3, was predicted to use oblique orientated α-helix formation in its mechanism of membrane destabilisation. Molecular dynamic (MD) simulations and circular dichroism (CD) experimental data suggested that aurein 2.3 exists in solution as unstructured monomers and folds to form predominantly α-helical structures in the presence of a dimyristoylphosphatidylcholine membrane. MD showed that the peptide was highly surface active, which supported monolayer data where the peptide induced surface pressure changes>34 mNm(-1). In the presence of a lipid membrane MD simulations suggested that under hydrophobic mismatch the peptide is seen to insert via oblique orientation with a phenylalanine residue (PHE3) playing a key role in the membrane interaction. There is evidence of snorkelling leucine residues leading to further membrane disruption and supporting the high level of lysis observed using calcein release assays (76%). Simulations performed at higher peptide/lipid ratio show peptide cooperativity is key to increased efficiency leading to pore-formation.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Biofísica/métodos , Membrana Celular/metabolismo , Dicroísmo Circular , Simulação por Computador , Dimiristoilfosfatidilcolina/química , Fluoresceínas/química , Leucina/química , Lipídeos/química , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Fatores de Tempo
13.
Biochim Biophys Acta ; 1834(6): 1010-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23228929

RESUMO

Several human neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Familial Amyloidotic Polyneuropathy, have long been associated with, structural and functional changes in disease related proteins leading to aggregation into amyloid fibrils. Such changes can be triggered by post-translational modifications. Methylglyoxal modifications have been shown to induce the formation of small and stable native-like aggregates in the case of the amyloidogenic proteins insulin and α-synuclein. However, the fundamental biophysical mechanism underlying such methylglyoxal-induced protein aggregation is not yet fully understood. In this work cytochrome c (Cyt c) was used as a model protein for the characterization of specific glycation targets and to study their impact on protein structure, stability, and ability to form native-like aggregates. Our results show that methylglyoxal covalently modifies Cyt c at a single residue and induces early conformational changes that lead to the formation of native-like aggregates. Furthermore, partially unfolded species are formed, but do not seem to be implicated in the aggregation process. This shows a clear difference from the amyloid fibril mechanisms which involve partially or totally unfolded intermediates. Equilibrium-unfolding experiments show that glycation strongly decreases Cyt c conformational stability, which is balanced with an increase of conformational stability upon aggregation. Data collected from analytical and spectroscopic techniques, along with kinetic analysis based on least-squares parameter fitting and statistical model discrimination are used to help to understand the driving force underlying glycation-induced native-like aggregation, and enable the proposal of a comprehensive thermodynamic and kinetic model for native-like aggregation of methylglyoxal glycated Cyt c.


Assuntos
Amiloide/metabolismo , Citocromos c/metabolismo , Glicosilação , Aldeído Pirúvico/metabolismo , Sequência de Aminoácidos , Animais , Cavalos , Cinética , Lipídeos de Membrana/metabolismo , Conformação Proteica , Dobramento de Proteína , Termodinâmica
14.
Mol Cell Biochem ; 393(1-2): 301-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24833463

RESUMO

Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia, with production also being linked to tumourigenesis. HSPA mRNA transcripts and proteins were examined in three human glioma cell lines, representing astrocytoma, oligodendroglioma and glioblastoma, plus 18 clinical brain tissue samples. GAPDH was used as a control gene throughout these studies and exhibited a consistent level of expression in a normal astrocyte cell line, tumourous cell lines and tissue samples. In contrast, the average HSPA mRNA copy numbers detected in glioblastoma tissue were between 1.8- and 8.8-fold higher than in lower grade glioma and control tissue, respectively, which is suggestive of a grade-related transcription profile. Similar patterns of grade-related expression were also observed in glioma cell lines. This study indicates for the first time that HSPA expression in glioma cells may possibly be grade related, and hence could have potential as a prognostic marker.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Choque Térmico HSP70/biossíntese , Prognóstico , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico , Glioma/patologia , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Análise de Sobrevida
15.
Mol Cell Biochem ; 394(1-2): 53-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24833466

RESUMO

Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia. This study investigated the level of HSPA gene expression in human cell lines exposed to hypoxic conditions. Three human glioma cell lines were selected for this study, each representing different types of glioma (astrocytoma, oligodendroglioma and glioblastoma), with a normal human astrocyte cell line used as a control. HSPA RNA transcripts and proteins were examined in these samples using qRT-PCR, immunofluorescence and flow cytometry techniques. The average HSPA mRNA copy numbers detected in three glioma cell lines were approximately sixfold higher than in a normal astrocyte cell line. The expression of HSPA was induced in normal cell lines immediately after exposure to hypoxia with 33% of cells exhibiting expression. However, the effects of hypoxia on gene expression were marginal in glioma cells, due to the already increased levels of HSPA with both pre- and post-hypoxia samples showing expression in approximately 90% of cells. These results show that whilst the stress caused by both cancer and hypoxia induce HSPA expression the underlying imprint of tumourgenesis leads to sustained expression.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas de Choque Térmico HSP70/genética , Humanos , RNA Mensageiro/metabolismo , Fatores de Tempo , Regulação para Cima
16.
Eur Biophys J ; 43(8-9): 423-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25030320

RESUMO

Modelin-5-CONH2, a synthetic antimicrobial peptide, was used to gain an insight into species-selective haemolytic activity. The peptide displayed limited haemolytic activity against sheep (12%), human (2%), and pig (2%) erythrocytes. Our results show that Modelin-5-CONH2 had a disordered structure in the presence of vesicles formed from sheep, human, and pig erythrocyte lipid extract (<26% helical) yet folded to form helices in the presence of a phosphatidylcholine (PC) membrane interface (e.g. >42% in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine). Monolayer studies showed a strong correlation between anionic lipid content and monolayer insertion and lysis inducing surface pressure changes of 9.17 mN m(-1) for 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine compared with PC monolayers, which induced pressure changes of ca. 3 mN m(-1). The presence of cholesterol in the membrane is shown to increase the packing density as the PC:sphingomyelin (SM) ratio increases so preventing the peptide from forming a stable association with the membrane. The data suggests that the key driver for membrane interaction for Modelin-5-CONH2 is the anionic lipid attraction. However, the key factors in the species-specific haemolysis level for this peptide are the differing packing densities which are influenced by the SM:PC:cholesterol ratio.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Ovinos , Suínos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Humanos , Estrutura Secundária de Proteína , Especificidade da Espécie
17.
Eur Biophys J ; 43(6-7): 255-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24728560

RESUMO

Aurein 2.5 (GLFDIVKKVVGAFGSL-NH2) is an antimicrobial peptide, which was seen to have activity against Stachybotris chartarum, Penicillium roseopurpureum and Aspergillus flavus with minimum fungicidal concentrations in the range 250-500 µM. S. chartarum showed enhanced susceptibility to lysis as compared to P. roseopurpureum and A. flavus, (44, 26 and 28 % respectively). Monolayers formed from lipid membrane extracts derived from S. chartarum, P. roseopurpureum and A. flavus showed maximal surface pressure changes of 13.5, 10.3 and 10.2 mN m(-1) respectively. However, aurein 2.5 adopted similar levels of α-helical structure (circa 45 %) in the presence of vesicles formed from membrane lipid extracts derived from all three fungi. These data imply that differential activity is not due to targeting and membrane association but linked to the ability of the bound peptide to lyse the cells. At sterol levels mimetic of eukaryotic systems, high levels of α-helical structure (circa 50 %) were also observed and hence similar binding. However, enhanced sterol levels (>0.6) led to a reduction in monolayer membrane interaction, suggesting that the sterols influence efficacy. Consistent with this suggestion, thermodynamic analysis showed that the peptide was able to destabilise model fungal monolayers, as indicated by negative values of ∆Gmix.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fungos/citologia , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Fungos/efeitos dos fármacos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
18.
Bioorg Med Chem Lett ; 24(15): 3430-3, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24951329

RESUMO

The synthesis and biological evaluation of a novel pyridinium salt is reported. Initial membrane interaction with isolated phospholipid monolayers was obtained with the pyridinium salt, and two neutral analogues for comparison, and the anticancer effects of the best compound established using a cytotoxicity screening assay against glioma cells using both an established cell line and three short-term cell cultures-one of which has been largely resistant to all chemotherapeutic drugs tested to date. The results indicate that the pyridinium salt exhibits potent anticancer activity (EC50s=9.8-312.5 µM) on all cell types, including the resistant one, for a continuous treatment of 72 h. Microscopic examination of the treated cells using a trypan blue exclusion assay showed membrane lysis had occurred. Therefore, this letter highlights the potential for a new class of pyridinium salt to be developed as a much needed alternative treatment for glioma chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Compostos de Piridínio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/patologia , Humanos , Estrutura Molecular , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade
19.
J Pept Sci ; 20(12): 909-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234689

RESUMO

Globally, death due to cancers is likely to rise to over 20 million by 2030, which has created an urgent need for novel approaches to anticancer therapies such as the development of host defence peptides. Cn-AMP2 (TESYFVFSVGM), an anionic host defence peptide from green coconut water of the plant Cocos nucifera, showed anti-proliferative activity against the 1321N1 and U87MG human glioma cell lines with IC50 values of 1.25 and 1.85 mM, respectively. The membrane interactive form of the peptide was found to be an extended conformation, which primarily included ß-type structures (levels > 45%) and random coil architecture (levels > 45%). On the basis of these and other data, it is suggested that the short anionic N-terminal sequence (TES) of Cn-AMP2 interacts with positively charged moieties in the cancer cell membrane. Concomitantly, the long hydrophobic C-terminal sequence (YFVFSVGM) of the peptide penetrates the membrane core region, thereby driving the translocation of Cn-AMP2 across the cancer cell membrane to attack intracellular targets and induce anti-proliferative mechanisms. This work is the first to demonstrate that anionic host defence peptides have activity against human glioblastoma, which potentially provides an untapped source of lead compounds for development as novel agents in the treatment of these and other cancers.


Assuntos
Antineoplásicos/isolamento & purificação , Cocos/química , Oligopeptídeos/isolamento & purificação , Sequência de Aminoácidos , Ânions , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia
20.
J Alzheimers Dis Rep ; 8(1): 1055-1067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114545

RESUMO

Background: Glycogen synthase-3 kinase (GSK3) is one of the major contributors of tau hyperphosphorylation linked to neurofibrillary tangles in Alzheimer's disease (AD). Objective: To determine a mechanism of GSK-3ß activation by two periodontal bacteria consistently confirmed in AD autopsied brains. Methods: Porphyromonas gingivalis FDC381 and Actinomyces naeslundii ATCC10301 conditioned media were collected. IMR-32 cells were challenged for 48 h with the conditioned media alongside P. gingivalis (ATCC33277) ultrapurified lipopolysaccharide (LPS) designated Pg.LPS under established cell culture conditions either alone or combined. Gene expression and protein analyses for GSK-3ß were carried out. Results: qPCR demonstrated that GSK-3ß gene was overexpressed in IMR-32 cells treated with Pg.LPS with a 2.09-fold change (p = 0.0005), while A. naeslundii treated cells demonstrated 1.41-fold change (p = 0.004). Western blotting of the cells challenged with Pg.LPS (p = 0.01) and A. naeslundii conditioned medium (p = 0.001) demonstrated the 37 kDa band for each treatment with variable intensity across the medium control. Immunohistochemistry with the GSK-3ß of the IMR-32 cells challenged with Pg.LPS and A. naeslundii alone demonstrated cytoplasmic and nuclear localization. Conclusions: Exposure to various bacterial factors upregulated the gene expression of GSK-3ß. Western blotting for GSK-3ß confirmed the presence of the cleaved fragment by Pg.LPS (37 kDa band p = 0.01) and A. naeslundii conditioned medium (37 kDa band p = 0.001). Immunostaining demonstrated both cytoplasmic and nuclear localization of GSK-3ß. Therefore, Pg.LPS and an unknown factor from the A. naeslundii conditioned medium mediated GSK-3ß activation via its transcriptionally active, cleaved, fragment. These virulence factors in the body appear to be detrimental to brain health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA