Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 128(3): e2022JA031092, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440152

RESUMO

We present in-depth analysis of three southward-moving meso-scale (ion-to magnetohydrodynamic-scale) flux transfer events (FTEs) and subsequent crossing of a reconnecting magnetopause current sheet (MPCS), which were observed on 8 December 2015 by the Magnetospheric Multiscale spacecraft in the subsolar region under southward and duskward magnetosheath magnetic field conditions. We aim to understand the generation mechanism of ion-scale magnetic flux ropes (ISFRs) and to reveal causal relationship among magnetic field structures, electromagnetic energy conversion, and kinetic processes in magnetic reconnection layers. Results from magnetic field reconstruction methods are consistent with a flux rope with a length of about one ion inertial length growing from an electron-scale current sheet (ECS) in the MPCS, supporting the idea that ISFRs can be generated through secondary reconnection in an ECS. Grad-Shafranov reconstruction applied to the three FTEs shows that the FTEs had axial orientations similar to that of the ISFR. This suggests that these FTEs also formed through the same secondary reconnection process, rather than multiple X-line reconnection at spatially separated locations. Four-spacecraft observations of electron pitch-angle distributions and energy conversion rate j·E'=j·E+ve×B suggest that the ISFR had three-dimensional magnetic topology and secondary reconnection was patchy or bursty. Previously reported positive and negative values of j·E', with magnitudes much larger than expected for typical MP reconnection, were seen in both magnetosheath and magnetospheric separatrix regions of the ISFR. Many of them coexisted with bi-directional electron beams and intense electric field fluctuations around the electron gyrofrequency, consistent with their origin in separatrix activities.

2.
J Geophys Res Space Phys ; 127(7): e2022JA030408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248013

RESUMO

We present observations in Earth's magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard X-type geometry of the EDR, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.

3.
J Geophys Res Space Phys ; 126(11): e2021JA029841, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35864949

RESUMO

A method based on electron magnetohydrodynamics (EMHD) for the reconstruction of steady, two-dimensional plasma and magnetic field structures from data taken by a single spacecraft, first developed by Sonnerup et al. (2016), https://doi.org/10.1002/2016ja022430, is extended to accommodate inhomogeneity of the electron density and temperature, electron inertia effects, and guide magnetic field in and around the electron diffusion region (EDR), the central part of the magnetic reconnection region. The new method assumes that the electron density and temperature are constant along, but may vary across, the magnetic field lines. We present two models for the reconstruction of electron streamlines, one of which is not constrained by any specific formula for the electron pressure tensor term in the generalized Ohm's law that is responsible for electron unmagnetization in the EDR, and the other is a modification of the original model to include the inertia and compressibility effects. Benchmark tests using data from fully kinetic simulations show that our new method is applicable to both antiparallel and guide-field (component) reconnection, and the electron velocity field can be better reconstructed by including the inertia effects. The new EMHD reconstruction technique has been applied to an EDR of magnetotail reconnection encountered by the Magnetospheric Multiscale spacecraft on 11 July 2017, reported by Torbert et al. (2018), https://doi.org/10.1126/science.aat2998 and reconstructed with the original inertia-less version by Hasegawa et al. (2019), https://doi.org/10.1029/2018ja026051, which demonstrates that the new method better performs in recovering the electric field and electron streamlines than the original version.

4.
J Geophys Res Space Phys ; 126(4): e2020JA028922, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33868890

RESUMO

Electromagnetic ion cyclotron (EMIC) waves play important roles in particle loss processes in the magnetosphere. Determining the evolution of EMIC waves as they propagate and how this evolution affects wave-particle interactions requires accurate knowledge of the wave vector, k. We present a technique using the curl of the wave magnetic field to determine k observationally, enabled by the unique configuration and instrumentation of the Magnetospheric MultiScale (MMS) spacecraft. The wave curl analysis is demonstrated for synthetic arbitrary electromagnetic waves with varying properties typical of observed EMIC waves. The method is also applied to an EMIC wave interval observed by MMS on October 28, 2015. The derived wave properties and k from the wave curl analysis for the observed EMIC wave are compared with the Waves in Homogenous, Anisotropic, Multi-component Plasma (WHAMP) wave dispersion solution and with results from other single- and multi-spacecraft techniques. We find good agreement between k from the wave curl analysis, k determined from other observational techniques, and k determined from WHAMP. Additionally, the variation of k due to the time and frequency intervals used in the wave curl analysis is explored. This exploration demonstrates that the method is robust when applied to a wave containing at least 3-4 wave periods and over a rather wide frequency range encompassing the peak wave emission. These results provide confidence that we are able to directly determine the wave vector properties using this multi-spacecraft method implementation, enabling systematic studies of EMIC wave k properties with MMS.

5.
J Geophys Res Space Phys ; 123(11): 9130-9149, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30775197

RESUMO

We investigate the accuracy with which the reconnection electric field E M can be determined from in situ plasma data. We study the magnetotail electron diffusion region observed by National Aeronautics and Space Administration's Magnetospheric Multiscale (MMS) on 11 July 2017 at 22:34 UT and focus on the very large errors in E M that result from errors in an L M N boundary normal coordinate system. We determine several L M N coordinates for this MMS event using several different methods. We use these M axes to estimate E M. We find some consensus that the reconnection rate was roughly E M = 3.2 ± 0.6 mV/m, which corresponds to a normalized reconnection rate of 0.18 ± 0.035. Minimum variance analysis of the electron velocity (MVA-v e), MVA of E, minimization of Faraday residue, and an adjusted version of the maximum directional derivative of the magnetic field (MDD-B) technique all produce reasonably similar coordinate axes. We use virtual MMS data from a particle-in-cell simulation of this event to estimate the errors in the coordinate axes and reconnection rate associated with MVA-v e and MDD-B. The L and M directions are most reliably determined by MVA-v e when the spacecraft observes a clear electron jet reversal. When the magnetic field data have errors as small as 0.5% of the background field strength, the M direction obtained by MDD-B technique may be off by as much as 35°. The normal direction is most accurately obtained by MDD-B. Overall, we find that these techniques were able to identify E M from the virtual data within error bars ≥20%.

6.
Adolescence ; 29(114): 475-95, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-8085497

RESUMO

Adolescent substance abuse has been the focus of nationwide attention, and researchers have examined an assortment of variables relating to this disease. One area of interest has been the relationship between adolescent chemical dependency and family factors. A review of the current literature yields two broad categories: (1) family drug usage patterns, and (2) family atmosphere. In general, there seems to be a significant relationship between family variables and teenage substance abuse; however, the strength of the relationship differs with the substance used. Specifically, research has shown a strong relationship between adolescent substance abuse and family drug usage, family composition, family interaction patterns, and discrepancies in family perceptions. Findings and their implications for practitioners are discussed.


Assuntos
Família/psicologia , Pais/psicologia , Psicologia do Adolescente , Transtornos Relacionados ao Uso de Substâncias/psicologia , Adolescente , Humanos
7.
Phys Rev Lett ; 87(19): 195004, 2001 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-11690418

RESUMO

Simulations of collisionless magnetic reconnection show a dramatic enhancement of the nonlinear reconnection rate due to the formation of an open outflow region. We link the formation of this open configuration to dispersive whistler and kinetic Alfvén wave dynamics at small scales. The roles of these two waves are controlled by two dimensionless parameters, which allow us to identify regions of fast and slow reconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA