Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 25(46): 10803-10807, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31136016

RESUMO

The separation of deuterium from hydrogen still remains a challenging and industrially relevant task. Compared to traditional cryogenic methods for separation, based on different boiling points of H2 and D2 , the use of ultramicroporous materials offers a more efficient alternative method. Due to their rigid structures, permanently high porosity, tunable pore sizes and adjustable internal surface properties, metal-organic frameworks (MOFs), a class of porous materials built through the coordination between organic linkers and metal ions/clusters, are more suitable for this approach than zeolites or carbon-based materials. Herein, dynamic gas flow studies on H2 /D2 quantum sieving in MFU-4, a metal-organic framework with ultra-narrow pores of 2.5 Å, are presented. A specially designed sensor with a very fast response based on surface acoustic waves is used. On-chip measurements of diffusion rates in the temperature range 27-207 K reveal a quantum sieving effect, with D2 diffusing faster than H2 below 64 K and the opposite selectivity above this temperature. The experimental results obtained are confirmed by molecular dynamic simulation regarding quantum sieving of H2 and D2 on MOFs for which a flexible framework approach was used for the first time.

2.
Chemistry ; 21(22): 8188-99, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25882594

RESUMO

The isomorphous partial substitution of Zn(2+) ions in the secondary building unit (SBU) of MFU-4l leads to frameworks with the general formula [M(x)Zn(5-x)Cl4(BTDD)3], in which x≈2, M = Mn(II), Fe(II), Co(II), Ni(II), or Cu(II), and BTDD = bis(1,2,3-triazolato-[4,5-b],[4',5'-i])dibenzo-[1,4]-dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU-4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis-NIR, TGA, and gas sorption measurements. Several MFU-4l derivatives show high catalytic activity in a liquid-phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co- and Cu derivatives with chloride side-ligands are the most active catalysts. Upon thermal treatment, several side-ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, Co(II)-azide units in the SBU of Co-MFU-4l are converted into Co(II)-isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of Cu(II)-fluoride units with H2 at 240 °C leads to Cu(I) and proceeds through the heterolytic cleavage of the H2 molecule.

3.
Angew Chem Int Ed Engl ; 53(23): 5832-6, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24846505

RESUMO

Postsynthetic metal and ligand exchange is a versatile approach towards functionalized MFU-4l frameworks. Upon thermal treatment of MFU-4l formates, coordinatively strongly unsaturated metal centers, such as zinc(II) hydride or copper(I) species, are generated selectively. Cu(I)-MFU-4l prepared in this way was stable under ambient conditions and showed fully reversible chemisorption of small molecules, such as O2, N2, and H2, with corresponding isosteric heats of adsorption of 53, 42, and 32 kJ mol(-1), respectively, as determined by gas-sorption measurements and confirmed by DFT calculations. Moreover, Cu(I)-MFU-4l formed stable complexes with C2H4 and CO. These complexes were characterized by FTIR spectroscopy. The demonstrated hydride transfer to electrophiles and strong binding of small gas molecules suggests these novel, yet robust, metal-organic frameworks with open metal sites as promising catalytic materials comprising earth-abundant metal elements.

4.
Phys Chem Chem Phys ; 15(10): 3552-61, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23381460

RESUMO

Two perfluorinated metal hydroxo terephthalates [M(III)(OH)(BDC-F)]·n(guests) (M(III) = V, MIL-47-F-AS or 1-AS; Al, Al-MIL-53-F-AS or 2-AS) (BDC-F = 2-fluoro-1,4-benzenedicarboxylate; AS = as-synthesized) have been synthesized by a hydrothermal method using microwave irradiation (1-AS) or conventional electric heating (2-AS), respectively. The unreacted or occluded H(2)BDC-F molecules can be removed under vacuum by direct thermal activation or exchange of guest molecules followed by thermal treatment leading to the empty-pore forms of the title compounds [V(IV)(O)(BDC-F)] (MIL-47-F, 1) and [Al(III)(OH)(BDC-F)] (Al-MIL-53-F, 2). Thermogravimetric analysis (TGA) and temperature-dependent XRPD (TDXRPD) experiments indicate that the compounds are stable up to 385 and 480 °C, respectively. Both of the thermally activated compounds exhibit significant microporosity, as verified by N(2), CO(2), n-hexane, o- and p-xylene sorption analyses. The structural changes of 2 upon adsorption of CO(2), n-hexane, o- and p-xylene were highly influenced due to functionalization by -F groups, as compared to parent Al-MIL-53. The -F groups also introduce a certain degree of hydrophobicity into the frameworks, as demonstrated by the H(2)O sorption analyses.


Assuntos
Alumínio/química , Dióxido de Carbono/química , Compostos Organometálicos/química , Vanádio/química , Xilenos/química , Adsorção , Estrutura Molecular , Análise Espectral Raman
6.
Phys Chem Chem Phys ; 14(37): 12892-7, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22895492

RESUMO

The preferred adsorption sites of xenon in the recently synthesized metal-organic framework MFU-4l(arge) possessing a bimodal pore structure (with pore sizes of 12 Å and 18.6 Å) were studied via the combination of low temperature thermal desorption spectroscopy and in situ X-ray powder diffraction. The diffraction patterns were collected at 110 K and 150 K according to the temperature of the desorption maxima. The maximum entropy method was used to reconstruct the electron density distribution of the structure and to localize the adsorbed xenon using refined data of the Xe-filled and empty sample. First principles calculations revealed that Xe atoms exclusively occupy the Wyckoff 32f position at approximately 2/3 2/3 2/3 along the body diagonal of the cubic crystal structure. At 110 K, Xe atoms occupy all 32 f positions (8 atoms per pore) while at 150 K the occupancy descends to 25% (2 atoms per pore). No Xe occupation of the small pores is observed by neither experimental measurements nor theoretical studies.

7.
Chemistry ; 17(6): 1837-48, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21274935

RESUMO

A highly porous member of isoreticular MFU-4-type frameworks, [Zn(5)Cl(4)(BTDD)(3)] (MFU-4l(arge)) (H(2)-BTDD=bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), has been synthesized using ZnCl(2) and H(2)-BTDD in N,N-dimethylformamide as a solvent. MFU-4l represents the first example of MFU-4-type frameworks featuring large pore apertures of 9.1 Å. Here, MFU-4l serves as a reference compound to evaluate the origin of unique and specific gas-sorption properties of MFU-4, reported previously. The latter framework features narrow-sized pores of 2.5 Å that allow passage of sufficiently small molecules only (such as hydrogen or water), whereas molecules with larger kinetic diameters (e.g., argon or nitrogen) are excluded from uptake. The crystal structure of MFU-4l has been solved ab initio by direct methods from 3D electron-diffraction data acquired from a single nanosized crystal through automated electron diffraction tomography (ADT) in combination with electron-beam precession. Independently, it has been solved using powder X-ray diffraction. Thermogravimetric analysis (TGA) and variable-temperature X-ray powder diffraction (XRPD) experiments carried out on MFU-4l indicate that it is stable up to 500 °C (N(2) atmosphere) and up to 350 °C in air. The framework adsorbs 4 wt % hydrogen at 20 bar and 77 K, which is twice the amount compared to MFU-4. The isosteric heat of adsorption starts for low surface coverage at 5 kJ mol(-1) and decreases to 3.5 kJ mol(-1) at higher H(2) uptake. In contrast, MFU-4 possesses a nearly constant isosteric heat of adsorption of ca. 7 kJ mol(-1) over a wide range of surface coverage. Moreover, MFU-4 exhibits a H(2) desorption maximum at 71 K, which is the highest temperature ever measured for hydrogen physisorbed on metal-organic frameworks (MOFs).

8.
J Mater Chem B ; 6(40): 6481-6489, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254655

RESUMO

Arsenic trioxide is a double-edged sword: On the one hand it is known as a poison, on the other hand it is used as an anticancer drug. Though effective in the treatment of leukaemia, arsenic trioxide has not been able to be introduced into the treatment of solid tumour entities yet due to its dose-limiting toxicity. However, different in vitro and in vivo studies revealed arsenic trioxide to be a potent agent against different solid tumour entities, including atypical teratoid rhabdoid tumours (ATRT), a paediatric brain tumour entity with a very poor prognosis. To improve the pharmacokinetics and therapeutic efficacy of arsenic trioxide and to reduce its toxic side effects, we propose to use a metal-organic framework (MOF) as a drug carrier material. Herein we report on using a MOF called MFU-4l (Metal-Organic Framework Ulm University), consisting of Zn(ii) ions and bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin ligands, to deliver arsenic trioxide in a form of dihydrogen arsenite anions. The H2AsO3 - anions were introduced to the MOF in a nanoparticle formulation via a postsynthetic side ligand exchange. The prepared material was characterised by IR, TGA, XRPD, SEM-EDX, TEM, DLS, ICP-OES and adsorption analysis. The drug release studies at different pH values were carried out as well as cytotoxicity tests with different ATRT cell lines and non-tumorous-control cell lines. The MOF-based material was shown to be a promising candidate for arsenic trioxide drug delivery.

9.
ACS Sens ; 2(6): 740-747, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28723109

RESUMO

Observation of the kinetics and measurement of the activation energies for gas diffusion in porous materials requires very fast and sensitive sensors. In this work, thin films of metal-organic frameworks (MOFs) with different pore sizes are grown on a surface acoustic wave (SAW) substrate, resulting in very sensitive and specific sensor systems for the detection of various gases at very short time scales. Using specially designed SAW delay lines for the detection, up to 200-nm-wide cubic MOF crystals were grown directly from a solution on the sensitive sensor chip area. One example, MFU-4, exhibits a smallest pore aperture of 2.5 Å and shows a highly sensitive and specific response to CO2, H2, He, NH3, and H2O. It is shown that such a MOF@SAW sensor responds within milliseconds to gas loading and its sensitivity reaches levels as low as 1 ppmv, currently only limited by the gas mixing system. This unique combination of sensitivity and fast response characteristics allows even for real-time investigations of the sorption kinetics during gas uptake and release. As is typical for SAW sensors, the production of the chips is very straightforward and inexpensive and-combined with the unique properties of the MOFs with their tunable pore sizes and adjustable internal surface properties-holds promise for different sensor applications.

10.
Dalton Trans ; 44(29): 13060-70, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26103597

RESUMO

The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

11.
Chem Commun (Camb) ; 51(4): 714-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25418446

RESUMO

The primary adsorption sites for Kr and Xe within the large-pore metal-organic framework Cu(I)-MFU-4l have been investigated by high-resolution synchrotron powder diffraction, revealing an enormous number of adsorption sites: in total, 10 crystallographically different positions for Xe and 8 positions for Kr were localized, the first five of which are located near metal atoms and the organic linker, and the remaining sites form a second adsorption layer in the pores.


Assuntos
Cobre/química , Criptônio/química , Compostos Organometálicos/química , Xenônio/química , Dioxinas/química , Modelos Moleculares , Difração de Pó , Triazóis/química , Difração de Raios X
12.
Dalton Trans ; 43(25): 9612-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24831780

RESUMO

The metal-organic framework MFU-4 shows preferential adsorption of CO2 over N2. This cannot be explained in terms of pore size only. Computational modelling suggests that the unique structure and flexibility of its small 8Cl-cube pore shows a unique gate-diffusion behaviour with different responses to CO2 and N2.

13.
Dalton Trans ; 43(44): 16846-56, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25293311

RESUMO

The syntheses and crystal structures of H2-1,3-bdpb·MeOH, [Cu(II)2(1,3-bdpb)(OCH3)2] (CFA-5) and [Cu(I)Cl(H2-1,3-bdpb)] (H2-1,3-bdpb = 1,3-bis(3,5-dimethyl-1H-pyrazol-4-yl)benzene) are described. The copper(II) containing metal-organic framework (termed Coordination Framework Augsburg University-5, CFA-5) crystallizes in the trigonal crystal system, within the space group R3̄ (no. 148) and the unit cell parameters are as follows: a = 26.839(3), c = 15.8317(16) Å, V = 9876.2(19) Å(3). CFA-5 features a two-fold interpenetrated 3-D microporous framework structure of cross-linked wheel-shaped {Cu(II)(pz)(OMe)}12 fundamental building units, each containing twelve copper(II) ions, µ2-bridging MeO(-) groups and pyrazolate (pz(-)) ligands. Replacing copper(II) acetate by copper(II) chloride in the synthesis leads to compound [Cu(I)Cl(H2-1,3-bdpb)], which crystallizes in the orthorhombic crystal system, within the space group Pnma (no. 62) and the unit cell parameters are as follows: a = 6.1784(8), b = 6.1784(8), c = 6.1784(8) Å, V = 1583.8(4) Å(3). In contrast to the former compound, CuCl(H2-1,3-bdpb) is a non-porous compound consisting of Cu(I)-Cl zigzag chains expanding in the direction [100] and H2-1,3-bdpb ligands. CFA-5 is characterized by elemental and thermogravimetric analyses, variable temperature powder X-ray diffraction and IR-spectroscopy; and its porosity and magnetic properties are described in detail. CFA-5 shows a promising catalytic activity in the heterogeneously catalyzed aerobic oxidation of tetralin, which is compared with other catalytically active metal-organic frameworks.

14.
Dalton Trans ; 42(19): 6909-21, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23519355

RESUMO

The syntheses of H2-phbpz, [Cu2(phbpz)]·2DEF·MeOH (CFA-2) and [Ag2(phbpz)] (CFA-3) (H2-phbpz = 3,3',5,5'-tetraphenyl-1H,1'H-4,4'-bipyrazole) compounds and their crystal structures are described. The Cu(I) containing metal-organic framework CFA-2 crystallizes in the tetragonal crystal system, within space group I4(1)/a (no. 88) and the following unit cell parameters: a = 30.835(14), c = 29.306(7) Å, V = 27 865(19) Å(3). CFA-2 features a flexible 3-D three-connected two-fold interpenetrated porous structure constructed of triangular Cu(I) subunits. Upon exposure to different kinds of liquids (MeOH, EtOH, DMF, DEF) CFA-2 shows pronounced breathing effects. CFA-3 crystallizes in the monoclinic crystal system, within space group P2(1)/c (no. 14) and the following unit cell parameters: a = 16.3399(3), b = 32.7506(4), c = 16.2624(3) Å, ß = 107.382(2)°, V = 8305.3(2) Å(3). In contrast to the former compound, CFA-3 features a layered 2-D three-connected structure constructed from triangular Ag(i) subunits. Both compounds are characterized by elemental and thermogravimetric analyses, single crystal structure analysis and X-ray powder diffraction, FTIR- and fluorescence spectroscopy. Preliminary results on oxygen activation in CFA-2 are presented and potential improvements in terms of framework robustness and catalytic efficiency are discussed.

15.
Adv Mater ; 25(4): 635-9, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23135873

RESUMO

The metal-organic framework, MFU-4, possessing small cavities and apertures, is exploited for quantum sieving of hydrogen isotopes. Quantum mechanically, a molecule confined in a small cavity shows an increase in effective size depending on the particle mass, which leads to a faster deuterium adsorption from a H(2)/D(2) isotope mixture.

16.
Dalton Trans ; 42(30): 10786-97, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23775495

RESUMO

The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn5(OAc)4(bibta)3], containing the achiral linker {H2-bibta = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole}, has been synthesised. The reaction of H2-bibta and Zn(OAc)2·2H2O in N-methylformamide (NMF) (90 °C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn(2+) by Co(2+) ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements ((13)C MAS- and (1)H MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments.

17.
Chem Commun (Camb) ; 48(9): 1236-8, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22179398

RESUMO

Postsynthetic metal ion exchange in a benzotriazolate-based MFU-4l(arge) framework leads to a Co(II)-containing framework with open metal sites showing reversible gas-phase oxidation properties.

18.
Chem Commun (Camb) ; 48(58): 7295-7, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22699163

RESUMO

A 12-connected metal-organic framework based on an unprecedented cyclic Cu(12) cluster with a large internal cavity has been prepared, and its cation exchange property was determined.

19.
Dalton Trans ; 41(14): 4239-48, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22382728

RESUMO

The metal-organic framework [Cu(ta)(2)] (Hta = 1H-1,2,3-triazole), containing Jahn-Teller active Cu(II) ions and 1,2,3-triazolate ligands, is prepared under solvothermal reaction conditions. The compound shows a reversible phase transition from the tetragonal crystal system (α-[Cu(ta)(2)]: space group I4(1)/amd (no. 141), a = 11.8447(7) Å, c = 18.9782(13) Å, V = 2662.6(3) Å(3)) to the cubic crystal system (ß-[Cu(ta)(2)]: space group Fd3m (no. 227), a = 17.4416(15) Å, V = 5305.9(8) Å(3)) within the temperature range of 120-160 °C. Both [Cu(ta)(2)] polymorphs have identical bonding topologies that might be described as fully condensed Kuratowski-type pentanuclear secondary building units of local T(d) point group symmetry in which four Cu(II) ions occupy the vertices of an imaginary tetrahedron. α-[Cu(ta)(2)], as opposed to the high-temperature ß-phase, shows a strong tetragonal Jahn-Teller distortion of CuN(6) coordination octahedra. The compounds are characterized by elemental and thermogravimetric analyses, single crystal and powder X-ray diffraction, FTIR-, UV-vis and fluorescence spectroscopy. Magnetic susceptibility investigations reveal two different Cu(II) sites at a ratio of 1 : 2, in agreement with the solid state structure of [Cu(ta)(2)]. At low temperatures the formation of antiferromagnetically coupled Cu(II) dimers is observed, leading to a spin frustration of roughly 1/3 of all magnetically active Cu(II) sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA