Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 69(6): 1-7, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37605598

RESUMO

In the current scenario, the importance of cardiac biomarkers in diagnosing, assessing, and managing people with cardiovascular discomfort is required. This cross-sectional study examined the relationship between serum leptin and resistin levels among obese people with acute myocardial infarction (AMI) with varying body mass index (BMI). The cardio and diabetic biomarkers among the 77 Saudi patients with hypoxia who lived in the Asir region were analyzed in the study. The patients were categorized into three groups, namely, group 1 (control), group 2 (AMI with normal BMI), and group 3 (AMI with varying BMI). Our results showed a positive correlation between serum glucose, HbA1C, triglycerides, Troponin-I (cTnI), creatine kinase MB (CK-MB), leptin, and resistin in patients with AMI. We also observed significantly lower HbA1C, cholesterol, and insulin values in groups 2 and 3. A statistical difference between the groups with and without AMI and between the genders was noticed. BMI with leptin showed a positive connection in group 3 but no association was observed for groups 1 and 2. A stronger relationship between BMI and leptin levels in men in Group 3 than in women was observed. In all three groups, resistin levels did not correlate with BMI. Thus, circulating leptin concentrations do not significant impact AMI compared to participants with and without AMI. However, resistin levels were considerably higher in obese individuals with AMI. Therefore, we suggest that resistin can be used as a pro-inflammatory marker to detect AMI disorder with varying BMI and as a prognostic marker associated with AMI.


Assuntos
Leptina , Infarto do Miocárdio , Masculino , Humanos , Feminino , Resistina , Estudos Transversais , Hemoglobinas Glicadas , Arábia Saudita , Obesidade/complicações
2.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375404

RESUMO

Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Despite the existence of various therapeutic options, NSCLC is still a major health concern due to its aggressive nature and high mutation rate. Consequently, HER3 has been selected as a target protein along with EGFR because of its limited tyrosine kinase activity and ability to activate PI3/AKT pathway responsible for therapy failure. We herein used a BioSolveIT suite to identify potent inhibitors of EGFR and HER3. The schematic process involves screening of databases for constructing compound library comprising of 903 synthetic compounds (602 for EGFR and 301 for HER3) followed by pharmacophore modeling. The best docked poses of compounds with the druggable binding site of respective proteins were selected according to pharmacophore designed by SeeSAR version 12.1.0. Subsequently, preclinical analysis was performed via an online server SwissADME and potent inhibitors were selected. Compound 4k and 4m were the most potent inhibitors of EGFR while 7x effectively inhibited the binding site of HER3. The binding energies of 4k, 4m, and 7x were -7.7, -6.3 and -5.7 kcal/mol, respectively. Collectively, 4k, 4m and 7x showed favorable interactions with the most druggable binding sites of their respective proteins. Finally, in silico pre-clinical testing by SwissADME validated the non-toxic nature of compounds 4k, 4m and 7x providing a promising treatment option for chemoresistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
3.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985595

RESUMO

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Alcaptonúria , Ocronose , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/genética , Alcaptonúria/metabolismo , Simulação de Acoplamento Molecular , Ocronose/tratamento farmacológico , Ácido Homogentísico/metabolismo
4.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903376

RESUMO

Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Quinolinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Colinesterases/metabolismo , Quinolinas/uso terapêutico , Relação Estrutura-Atividade , Estrutura Molecular
5.
Molecules ; 27(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889240

RESUMO

Suaeda fruticosa Forssk. Ex J.F.Gmel is traditionally used for inflammatory and digestive disorders, as a carminative, and for diarrhea. This plant is widely distributed in Asia, Africa, and the Mediterranean region. Aqueous methanolic extract of S. fruticosa (Sf.Cr) was prepared and screened for phytoconstituents through qualitative and GC-MS analysis. Quantification of total phenolic and flavonoid contents was performed, while antioxidant capacity was determined by DPPH, CUPRAC, FRAP, and ABTS assays. The gastroprotective activity was assessed in an ethanol-induced ulcer model. Gastric secretory parameters and macroscopic ulcerated lesions were analyzed and scored for ulcer severity. After scoring, histopathology was performed, and gastric mucus contents were determined. Oral pre-treatment of Sf.Cr demonstrated significant gastroprotection. The gastric ulcer severity score and ulcer index were reduced while the %-inhibition of ulcer was increased dose-dependently. The Sf.Cr significantly elevated the pH of gastric juice, while a decrease in total acidity and gastric juice volume was observed. Histopathology demonstrated less oedema and neutrophil infiltration in gastric mucosa of rats pre-treated with the Sf.Cr in comparison to ethanol-intoxicated animals. Furthermore, the gastric mucus contents were increased as determined by alcian blue binding. Sf.Cr showed marked gastroprotective activity, which can be attributed to antioxidant, antisecretory, and cytoprotective effects.


Assuntos
Antiulcerosos , Chenopodiaceae , Úlcera Gástrica , Animais , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Antioxidantes/metabolismo , Etanol/metabolismo , Mucosa Gástrica , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Úlcera/tratamento farmacológico
6.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234867

RESUMO

There has been a lot of interest in the manufacture of stable, high-efficiency photocatalysts. In this study, initially Cr doped ZnFe2O4 nanoparticles (NPs) were made via surfactant-assisted hydrothermal technique. Then Cr-ZnFe2O4 NPs were modified by incorporating S-g-C3N4 to enhance their photocatalytic efficiency. The morphological, structural, and bonding aspects were analyzed by XRD, FTIR, and SEM techniques. The photocatalytic efficiency of the functional Cr-ZnFe2O4/S-g-C3N4 (ZFG) heterostructure photocatalysts was examined against MB under sunlight. The produced ZFG-50 composite has the best photocatalytic performance, which is 2.4 and 3.5 times better than that of ZnFe2O4 and S-g-C3N4, respectively. Experiments revealed that the enhanced photocatalytic activity of the ZFG nanocomposite was caused by a more effective transfer and separation of photo-induced charges. The ZFG photocatalyst can use sunlight for treating polluted water, and the proposed modification of ZnFe2O4 using Cr and S-g-C3N4 is efficient, affordable, and environmentally benign. Under visible light, Gram-positive and Gram-negative bacteria were employed to ZFG-50 NCs' antimicrobial activity. These ZFG-50 NCs also exhibit excellent antibacterial potential.


Assuntos
Antibacterianos , Luz Solar , Antibacterianos/farmacologia , Catálise , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Tensoativos , Água
7.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235098

RESUMO

Amylase and glucosidase enzymes are the primary harmful source in the development of the chronic condition known as diabetes mellitus. The main function of these enzymes is to break the macromolecules into simple sugar units which are directly involved in the solubility of blood, hence increasing blood glucose levels. To overcome this effect, there is a need for a potent and effective inhibitor that inhibits the conversion of macromolecules of sugar into its smaller units. In this regard, we synthesized thiazolidinone-based indole derivatives (1−20). The synthesized derivatives were evaluated for α-amylase and α-glucosidase inhibitory activity. Different substituted derivatives were found with moderate to good potentials having IC50 values ranging, for α-amylase, from 1.50 ± 0.05 to 29.60 ± 0.40 µM and, for α-glucosidase, from IC50 = 2.40 ± 0.10 to 31.50 ± 0.50 µM. Among the varied substituted compounds, the most active analogs four (1.80 ± 0.70 and 2.70 ± 0.70), five (1.50 ± 0.05 and 2.40 ± 0.10, respectively) of the series showed few folds better inhibitory activity than standard drug acarbose (IC50 = 10.20 ± 0.10 and 11.70 ± 0.10 µM, respectively). Moreover, structure−activity relationship (SAR) was established and binding interactions were analyzed for ligands and proteins (α-amylase and α-glucosidase) through a molecular docking study.


Assuntos
Glucosidases , alfa-Glucosidases , Acarbose , Amilases/metabolismo , Glicemia , Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Indóis/química , Indóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores de Droga , Relação Estrutura-Atividade , alfa-Amilases , alfa-Glucosidases/metabolismo
8.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235294

RESUMO

Common methodologies such as liquid-liquid extraction and solid-phase extraction are applied for the extraction of opioids from biological specimens i.e., blood and urine. Techniques including LC-MS/LC-MSMS, GC-MS, etc. are used for qualitative or quantitative determination of opioids. The goal of the present work is to design a green, economic, rugged, and simple extraction technique for famous opioids in human blood and urine and their simultaneous quantification by GC-MS equipped with an inert plus electron impact (EI) ionization source at SIM mode to produce reproducible and efficient results. Morphine, codeine, 6-acetylmorphine, nalbuphine, tramadol and dextromethorphan were selected as target opioids. Anhydrous Epsom salt was applied for dSPE of opioids from blood and urine into acetonitrile extraction solvent with the addition of sodium phosphate buffer (pH 6) and n-hexane was added to remove non-polar interfering species from samples. BSTFA was used as a derivatizing agent for GC-MS. Following method validation, the LOD/LLOQ and ULOQ were determined for morphine, codeine, nal-buphine, tramadol, and dextromethorphan at 10 ng/mL and 1500 ng/mL, respectively, while the LOD/LLOQ and ULOQ were determined for 6-acetylmorphine at 5 ng/mL and 150 ng/mL, respectively. This method was applied to real blood and urine samples of opioid abusers and the results were found to be reproducible with true quantification.


Assuntos
Nalbufina , Tramadol , Acetonitrilas , Analgésicos Opioides , Codeína/análise , Dextrometorfano , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Morfina/análise , Derivados da Morfina/urina , Extração em Fase Sólida/métodos , Solventes , Detecção do Abuso de Substâncias/métodos
9.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364195

RESUMO

The current study was conducted to obtain hybrid analogues of indole-based thiadiazole derivatives (1-16) in which a number of reaction steps were involved. To examine their biological activity in the presence of the reference drug Donepezil (0.21 ± 0.12 and 0.30 ± 0.32 M, respectively), the inhibitory potentials of AChE and BuChE were determined for these compounds. Different substituted derivatives showing a varied range of inhibitory profiles, when compared to the reference drug, analogue 8 was shown to have potent activity, with IC50 values for AchE 0.15 ± 0.050 M and BuChE 0.20 ± 0.10, respectively, while other substituted compounds displayed good to moderate potentials. Varied spectroscopic techniques including 1H, 13CNMR and HREI-MS were used to identify the basic skeleton of these compounds. Furthermore, all analogues have a known structure-activity relationship (SAR), and molecular docking investigations have verified the binding interactions of molecule to the active site of enzymes.


Assuntos
Acetilcolinesterase , Tiadiazóis , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Tiadiazóis/farmacologia , Tiadiazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Indóis/farmacologia
10.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296720

RESUMO

A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1-15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine.


Assuntos
Urease , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Benzeno , Hidrazinas , Derivados de Benzeno , Acarbose/farmacologia , Relação Estrutura-Atividade , Tioureia/química , Sulfanilamida , Estreptomicina , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
11.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234994

RESUMO

In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1-17) were afforded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared to acarbose as a standard drug. The recently available analogs showed a wide variety of inhibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase). A structure-activity relationship (SAR) study was carried out for all analogs based on substitution patterns around both rings B and C respectively. It was concluded from the SAR study that analogs bearing either substituent(s) of smaller size (-F and Cl) or substituent(s) capable of forming hydrogen bonding (-OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials. Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4 (with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10, 2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs bearing substituent(s) of either a bulky nature (-Br) or that are incapable of forming hydrogen bonds (-CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular docking studies were also conducted on the potent analogs. The results showed that these analogs adopted many important interactions with the active areas of enzymes. The precise structure of the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR and HREI-MS.


Assuntos
alfa-Amilases , alfa-Glucosidases , Acarbose/farmacologia , Benzimidazóis/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/química , alfa-Glucosidases/metabolismo
12.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235116

RESUMO

Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1-25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1-25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1-25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 µM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure-activity relationship, the synthesized compounds were split into two groups, "A" and "B." Among category "A" analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category "B" analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.


Assuntos
Benzoxazóis , Urease , Benzimidazóis/farmacologia , Benzoxazóis/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tioureia/química
13.
J Cell Physiol ; 236(1): 146-156, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484605

RESUMO

Targeted chemotherapy remains the primary choice in controlling various forms of breast cancer (BC) due to its heterogenous gene expressions in various subtypes. In silico and in vitro evaluation of ICY-5, a novel arylidene analogue against c-MET, was performed. ICY-5 exhibited a docking score of -9.6 kcal/mol in inactive conformation and, - 8.6 kcal/mol in active conformation for c-MET. ICY-5 inhibited c-MET enzyme with an IC50 of 34.34 nM. The compound effectively inhibited MDA-MB 231 and MCF-7 cell proliferation, with GI50 values of 62.61 and 75.31 nM, respectively, and hepatocyte growth factor (HGF)/R c-MET phosphorylation with IC50 s of 71.41 and 83.77 nM, respectively. ICY-5 dose-dependently inhibited HGF-induced transmigration, cell scattering, invasion and altered cell cycle. An increase in apoptotic populations of these cells, with a dose-dependent decease in phosphorylation of STAT3 protein was observed. Furthermore, ICY-5 upregulated the caspase-3, caspase-9, Bcl-2-associated X and survivin, and downregulated Bcl-2, vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 in both BC cell lines. In summary, ICY-5 exhibited excellent efficacy in BC cells, targeting c-MET/SAT-3-mediated mitochondrial apoptosis. Further research will be required to ascertain ICY-5 suitability as a targeted chemotherapeutic against multiple forms of BC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
BMC Infect Dis ; 21(1): 28, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413198

RESUMO

BACKGROUND: Pneumocystis pneumonia (PCP) is a fatal infectious disease caused by Pneumocystis jirovecii (PJP). The major factor relevant to morbidity and mortality seems to be the host inflammatory reaction. The objective of this study was to evaluate the role of IL-2, IL-4, IL-10, and IL-13 cytokine mRNA expression among suspected P. jirovecii infection. METHODS: This was a cross-sectional analytical study undertaken in Aseer region, Saudi Arabia. One hundred suspected PCP cases and 100 healthy controls were included in the study. Basic clinical manifestations, radiological findings, microbiological and immunological findings were extracted from the hospital records from January 2019 to August 2019, Pneumocystis detection was done by immune-fluorescent staining (IFAT, Gomorimethanamine silver staining (GMSS), Giemsa staining, Toluidine blue O (TBO), and Pneumocystis RT-PCR. RESULTS: Increased more than 5 fold, 3 fold, 4 fold, and 7 fold of IL-2, IL-4, IL-10, and IL-13 mRNA expression were observed in PCP cases compared to controls. Higher expression of IL-2 mRNA was connected with crept, wheezing and chest X-ray findings like central perihilar infiltrate, patchy infiltrate, consolidation, hilar lymphadenopathy, pneumothorax, pleural effusion which showed higher expression compared to counterpart (p< 0.0001). Higher expression of IL-4 mRNA was found to be significantly associated with weight loss (p=0.002), dyspnea (p=0.003), crept (p=0.01), and chest X-ray findings (p< 0.0001). Significantly increased expression of IL-10 mRNA was observed to be associated with weight loss, dyspnea, night sweats, wheezing, and different findings of chest X-ray compared to their counterparts, whereas, IL-13 mRNA was observed in cases with fever. Suspected cases of PCP confirmed positive by IFTA with higher IL-2, IL-4, and IL-10 mRNA expression compared to negative cases. RT-PCR confirmed PCP cases had significantly higher expression of IL-2, IL-4, and IL-10 as well as IL-13 mRNA compared to negative cases. Positive detected cases by GMSS showed higher IL-2, IL-10 mRNA expression, while Giemsa showed only higher IL-4 mRNA expression compared to negative cases. CONCLUSION: Confirmed cases of P. jirovecii showed higher IL-2, IL-4, IL-10, and IL-13 mRNA expression comparatively to negative cases. Increased expression of cytokines may be indicative of infection severity and could help in patients' management.


Assuntos
Citocinas/genética , Pneumonia por Pneumocystis/genética , Adulto , Corantes Azur , Estudos de Casos e Controles , Estudos Transversais , Citocinas/sangue , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-13/genética , Interleucina-2/genética , Interleucina-4/genética , Masculino , Pessoa de Meia-Idade , Pneumocystis carinii/genética , Pneumocystis carinii/patogenicidade , Pneumonia por Pneumocystis/diagnóstico por imagem , Pneumonia por Pneumocystis/microbiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/sangue , Arábia Saudita , Cloreto de Tolônio
15.
Biotechnol Appl Biochem ; 68(1): 82-91, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32067263

RESUMO

Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3ß). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.


Assuntos
Indanos , Simulação de Dinâmica Molecular , Neoplasias , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Indanos/química , Indanos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Saudi Pharm J ; 28(10): 1203-1209, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33132714

RESUMO

BACKGROUND: Chronic periodontitis has an interplay between different species of bacteria found in dental biofilms act a crucial role in pathogenesis and disease progression. The existing antibacterial therapy is inadequate, associated with many side effects as well as evolving multidrug resistance. Hence, novel drugs development with minimum or no toxicity is an immediate priority. METHODS: Antibacterial efficacy of ethanolic extract of Matricaria aurea was tested against clinical isolates, ie. Treponema denticol, Tannerella forsythia, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis from the patients with chronic periodontitis. Zone of inhibition, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were investigated by well diffusion method and micro broth dilution assay using alamar blue. Anti-virulence properties of the extract, which include adherence property and the biofilm formation, were investigated by adherence as well as biofilm formation assay. RESULTS: Matricaria aurea extract showed potent inhibitory effect against pathogenic periodontal bacteria with the significant inhibitory zone (13-23 mm), MIC (0.39-1.56 mg/ml) as well as MBC (1.56-6.25 mg/ml). The M. aurea extract was able to inhibit bacterial adhesion ranged from 30 to 45%, 35 to 63% and 55 to 80% of MIC at MIC × 0.5, MIC × 1 and MIC × 2 respectively. Significant inhibition was found in biofilm formation to all the tested periodontal bacterial strains after the treatment with various concentrations of M. aurea extract for 24 and 48hrs. CONCLUSION: These results reveal for the first time that the Matricaria aurea extract might be the source of various compounds to be applied for chronic periodontitis therapy, which might draw these valuable compounds to the subsequent phase of development of the drug.

17.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321911

RESUMO

Dwarfism is a medical term used to describe individuals with a height-vertex measurement that falls below two standard deviations (-2SD) or the third percentile for their gender and age. Normal development of growth is a complicated dynamic procedure that depends upon the coordination of different aspects involving diet, genetics, and biological aspects like hormones in equilibrium. Any severe or acute pathologic procedure may disturb the individual's normal rate of growth. In this research, we examined four (A-D) Pakistani consanguineous families that exhibited syndromic dwarfism, which was inherited in an autosomal recessive pattern. The genomic DNA of each family member was extracted by using phenol-chloroform and Kit methods. Whole Exome Sequencing (WES) of affected family members (IV-11, III-5, IV-4 and III-13) from each group was performed at the Department of Medical Genetics, University of Antwerp, Belgium. After filtering the exome data, the mutations in PPM1F, FGFR3, ERCC2, and PCNT genes were determined by Sanger sequencing of each gene by using specific primers. Afterward, FGFR3 was found to be a suitable drug target among all the mutations to treat achondroplasia also known as disproportionate dwarfism. BioSolveIT softwares were used to discover the lead active inhibitory molecule against FGFR3. This research will not only provide short knowledge to the concerned pediatricians, researchers, and family physicians for the preliminary assessment and management of the disorder but also provide a lead inhibitor for the treatment of disproportionate dwarfism.Communicated by Ramaswamy H. Sarma.

18.
Antibiotics (Basel) ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978443

RESUMO

BACKGROUND: Bacterial infections constantly have a large impact on public health, because of increased rates of resistance and reduced frequency of development of novel antibiotics. The utility of conventional antibiotics for treating bacterial infections has become increasingly challenging. The aim of the study was to assess the antibacterial effect of ß-Lapachone (ß-Lap), a novel synthetic compound. METHODS: The antibacterial activity of the ß-Lap compound was examined against laboratory strains by agar well diffusion method and broth dilution assay. Growth kinetics in presence of ß-Lap on Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa (ATCC 27853) were assessed by microplate alamarBlue assay. Crystal violet blue assay was used for biofilm inhibition and biofilm eradication. P. aeruginosa catalase (KatA) complexed with ß-Lap was modeled using molecular docking approach. RESULTS: ß-Lap exhibited potent antimicrobial activity against laboratory strains of bacteria with MIC of 0.2 mM for S. saprophyticus and Staphylococcus aureus, and 0.04 mM for Staphylococcus epidermidis and Pseudomonas aeruginosa ATCC 27853. The inhibition of catalase enzyme was found to be the cause for its antibacterial activity. Bioinformatics analysis suggests that ß-Lap can inhibit KatA activity by interacting with catalase proximal active site and heme binding site. The activity of some commercial antibiotics was enhanced in association with ß-Lap. In addition, ß-Lap inhibited the biofilm formation and eradicated the already formed and ultra-mature biofilms of aforesaid bacterial strains. CONCLUSION: These observations indicated that ß-Lap could be a promising antibacterial agent for the treatment and prevention of infectious diseases.

19.
J Drug Target ; 31(7): 714-724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461888

RESUMO

Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)ß superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.


Assuntos
Fator 2 de Diferenciação de Crescimento , Neoplasias , Humanos , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator 2 de Diferenciação de Crescimento/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Morfogenéticas Ósseas , Transdução de Sinais , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fator de Crescimento Transformador beta , Microambiente Tumoral
20.
J Infect Public Health ; 16(1): 107-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508944

RESUMO

BACKGROUND: Monkeypox virus is an enveloped DNA virus that belongs to Poxviridae family. The virus is transmitted from rodents to primates via infected body fluids, skin lesions, and respiratory droplets. After being infected with virus, the patients experience fever, myalgia, maculopapular rash, and fluid-filled blisters. It is necessary to differentiate monkeypox virus from other poxviruses during diagnosis which can be appropriately envisioned via DNA analysis from swab samples. During small outbreaks, the virus is treated with therapies administered in other orthopoxviruses infections and does not have its own specific therapy and vaccine. Consequently, in this article, two potential peptides have been designed. METHODS: For the purpose of designing a vaccine, protein sequences were retrieved followed by the prediction of B- and T-cell epitopes. Afterward, vaccine structures were predicted which were docked with toll-like receptors. The docked complexes were analyzed with iMODS. Moreover, vaccine constructs nucleotide sequences were optimized and expressed in silico. RESULTS: COP-B7R vaccine construct (V1) has antigenicity score of 0.5400, instability index of 29.33, z-score of - 2.11-, and 42.11% GC content whereas COP-A44L vaccine construct (V2) has an antigenicity score of 0.7784, instability index of 23.33, z-score of - 0.61, and 48.63% GC content. It was also observed that COP-A44L can be expressed as a soluble protein in Escherichia coli as compared to COP-B7R which requires a different expression system. CONCLUSION: The obtained results revealed that both vaccine constructs show satisfactory outcomes after in silico investigation and have significant potential to prevent the monkeypox virus. However, COP-A44L gave better results.


Assuntos
Epitopos de Linfócito B , Monkeypox virus , Animais , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA