RESUMO
OBJECTIVE: The purpose of this study was to determine and compare the performance of pre-treatment clinical risk score (CRS), radiomics models based on computed (CT), and their combination for predicting time to recurrence (TTR) and disease-specific survival (DSS) in patients with colorectal cancer liver metastases. METHODS: We retrospectively analyzed a prospectively maintained registry of 241 patients treated with systemic chemotherapy and surgery for colorectal cancer liver metastases. Radiomics features were extracted from baseline, pre-treatment, contrast-enhanced CT images. Multiple aggregation strategies were investigated for cases with multiple metastases. Radiomics signatures were derived using feature selection methods. Random survival forests (RSF) and neural network survival models (DeepSurv) based on radiomics features, alone or combined with CRS, were developed to predict TTR and DSS. Leveraging survival models predictions, classification models were trained to predict TTR within 18 months and DSS within 3 years. Classification performance was assessed with area under the receiver operating characteristic curve (AUC) on the test set. RESULTS: For TTR prediction, the concordance index (95% confidence interval) was 0.57 (0.57-0.57) for CRS, 0.61 (0.60-0.61) for RSF in combination with CRS, and 0.70 (0.68-0.73) for DeepSurv in combination with CRS. For DSS prediction, the concordance index was 0.59 (0.59-0.59) for CRS, 0.57 (0.56-0.57) for RSF in combination with CRS, and 0.60 (0.58-0.61) for DeepSurv in combination with CRS. For TTR classification, the AUC was 0.33 (0.33-0.33) for CRS, 0.77 (0.75-0.78) for radiomics signature alone, and 0.58 (0.57-0.59) for DeepSurv score alone. For DSS classification, the AUC was 0.61 (0.61-0.61) for CRS, 0.57 (0.56-0.57) for radiomics signature, and 0.75 (0.74-0.76) for DeepSurv score alone. CONCLUSION: Radiomics-based survival models outperformed CRS for TTR prediction. More accurate, noninvasive, and early prediction of patient outcome may help reduce exposure to ineffective yet toxic chemotherapy or high-risk major hepatectomies.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Prognóstico , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento , Adulto , RadiômicaRESUMO
Interest for deep learning in radiology has increased tremendously in the past decade due to the high achievable performance for various computer vision tasks such as detection, segmentation, classification, monitoring, and prediction. This article provides step-by-step practical guidance for conducting a project that involves deep learning in radiology, from defining specifications, to deployment and scaling. Specifically, the objectives of this article are to provide an overview of clinical use cases of deep learning, describe the composition of multi-disciplinary team, and summarize current approaches to patient, data, model, and hardware selection. Key ideas will be illustrated by examples from a prototypical project on imaging of colorectal liver metastasis. This article illustrates the workflow for liver lesion detection, segmentation, classification, monitoring, and prediction of tumor recurrence and patient survival. Challenges are discussed, including ethical considerations, cohorting, data collection, anonymization, and availability of expert annotations. The practical guidance may be adapted to any project that requires automated medical image analysis.