Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 340, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974095

RESUMO

BACKGROUND: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus. RESULTS: Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons. CONCLUSIONS: The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.


Assuntos
Doenças dos Peixes , Microbiota , Parasitos , Perciformes , Trematódeos , Animais , Projetos Piloto , Peixes , Bactérias/genética , Doenças dos Peixes/epidemiologia
2.
Crit Rev Microbiol ; 48(4): 428-449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34595998

RESUMO

Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.


Assuntos
Bdellovibrio , Bactérias/genética , Bdellovibrio/fisiologia
3.
Parasitology ; 147(4): 418-430, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965950

RESUMO

The epicontinental fauna of the Iberian Peninsula is strongly influenced by its geographical history. As the possibilities for dispersion of organisms into and from this region were (and still are) limited, the local fauna consists almost exclusively of endemic species. Almost all Iberian freshwater fishes of the families Leuciscidae and Cyprinidae are endemic and on-going research on these taxa continually uncovers new species. Nevertheless, information on their host-specific parasites remains scarce. In this study, we investigate the diversity and phylogenetic relationships in monogeneans of the genus Dactylogyrus (gill ectoparasites specific to cyprinoid fish) in the Iberian Peninsula. Twenty-two species were collected and identified from 19 host species belonging to Cyprinidae and Leuciscidae. A high degree of endemism was observed, with 21 Dactylogyrus species reported from Iberia only and a single species, D. borealis, also reported from other European regions. Phylogenetic analysis split the endemic Iberian Dactylogyrus into two well-supported clades, the first encompassing Dactylogyrus parasitizing endemic Luciobarbus spp. only, and the second including all Dactylogyrus species of endemic leuciscids and four species of endemic cyprinids. Species delimitation analysis suggests a remarkable diversity and existence of a multitude of cryptic Dactylogyrus species parasitizing endemic leuciscids (Squalius spp. and representatives of Chondrostoma s.l.). These results suggest a rapid adaptive radiation of Dactylogyrus in this geographically isolated region, closely associated with their cyprinoid hosts. Moreover, phylogenetic analysis supports that Dactylogyrus parasites colonized the Iberian Peninsula through multiple dispersion events.


Assuntos
Evolução Biológica , Cyprinidae , Doenças dos Peixes/parasitologia , Trematódeos/fisiologia , Infecções por Trematódeos/veterinária , Adaptação Biológica , Animais , Biodiversidade , Feminino , Masculino , Portugal , Espanha , Infecções por Trematódeos/parasitologia
4.
Proc Natl Acad Sci U S A ; 109(44): 18000-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071304

RESUMO

Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia-Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host.


Assuntos
Plâncton/fisiologia , Simbiose , Biodiversidade , Dados de Sequência Molecular , Oceanos e Mares , Plâncton/classificação
5.
Virologie (Montrouge) ; 19(3): 140-148, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065909

RESUMO

Viruses display strong interactions with their hosts, from physiological and ecological point of views, often leading to strict patterns of host specificity. It is then tempting to consider that viruses evolve in the same way as their hosts, behaving more or less like hosts' characters. However, the cospeciation between viruses and their hosts, that is the degree to which their evolutionary trees are similar, has been the subject or relatively few studies, in a field otherwise very dynamic. The main concepts and methods to study the patterns of cospeciation, and more generally cophylogeny, are reviewed here. Their uses with host-virus systems suggest that, contrarily to a common belief, the joint evolutionary history of viruses and their hosts is often complex. Without a rigorous cophylogeny study, it is then very risky to consider that the evolutionary history of viruses mirrors that of their hosts.

6.
BMC Evol Biol ; 14: 59, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24669847

RESUMO

BACKGROUND: Numerous studies have investigated cospeciation (or cophylogeny) in various host-symbiont systems, and different patterns were inferred, from strict cospeciation where symbiont phylogeny mirrors host phylogeny, to complete absence of correspondence between trees. The degree of cospeciation is generally linked to the level of host specificity in the symbiont species and the opportunity they have to switch hosts. In this study, we investigated cophylogeny for the first time in a microalgae-virus association in the open sea, where symbionts are believed to be highly host-specific but have wide opportunities to switch hosts. We studied prasinovirus-Mamiellales associations using 51 different viral strains infecting 22 host strains, selected from the characterisation and experimental testing of the specificities of 313 virus strains on 26 host strains. RESULTS: All virus strains were restricted to their host genus, and most were species-specific, but some of them were able to infect different host species within a genus. Phylogenetic trees were reconstructed for viruses and their hosts, and their congruence was assessed based on these trees and the specificity data using different cophylogenetic methods, a topology-based approach, Jane, and a global congruence method, ParaFit. We found significant congruence between virus and host trees, but with a putatively complex evolutionary history. CONCLUSIONS: Mechanisms other than true cospeciation, such as host-switching, might explain a part of the data. It has been observed in a previous study on the same taxa that the genomic divergence between host pairs is larger than between their viruses. It implies that if cospeciation predominates in this algae-virus system, this would support the hypothesis that prasinoviruses evolve more slowly than their microalgal hosts, whereas host switching would imply that these viruses speciated more recently than the divergence of their host genera.


Assuntos
Filogenia , Fitoplâncton/genética , Vírus/genética , DNA Viral/genética , Especificidade de Hospedeiro
7.
Appl Environ Microbiol ; 80(10): 3150-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632251

RESUMO

Viruses strongly influence the ecology and evolution of their eukaryotic hosts in the marine environment, but little is known about their diversity and distribution. Prasinoviruses infect an abundant and widespread class of phytoplankton, the Mamiellophyceae, and thereby exert a specific and important role in microbial ecosystems. However, molecular tools to specifically identify this viral genus in environmental samples are still lacking. We developed two primer sets, designed for use with polymerase chain reactions and 454 pyrosequencing technologies, to target two conserved genes, encoding the DNA polymerase (PolB gene) and the major capsid protein (MCP gene). While only one copy of the PolB gene is present in Prasinovirus genomes, there are at least seven paralogs for MCP, the copy we named number 6 being shared with other eukaryotic alga-infecting viruses. Primer sets for PolB and MCP6 were thus designed and tested on 6 samples from the Tara Oceans project. The results suggest that the MCP6 amplicons show greater richness but that PolB gave a wider coverage of Prasinovirus diversity. As a consequence, we recommend use of the PolB primer set, which will certainly reveal exciting new insights about the diversity and distribution of prasinoviruses at the community scale.


Assuntos
Biodiversidade , Proteínas do Capsídeo/genética , DNA Polimerase Dirigida por DNA/genética , Phycodnaviridae/isolamento & purificação , Água do Mar/virologia , Proteínas Virais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Filogenia , Reação em Cadeia da Polimerase
8.
Anim Microbiome ; 6(1): 42, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080784

RESUMO

BACKGROUND: While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load. RESULTS: Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish. CONCLUSIONS: Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.

9.
BMC Evol Biol ; 13: 275, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24365056

RESUMO

BACKGROUND: Numerous studies have investigated cospeciation between parasites and their hosts, but there have been few studies concerning parasitoids and insect hosts. The high diversity and host specialization observed in Anicetus species suggest that speciation and adaptive radiation might take place with species diversification in scale insect hosts. Here we examined the evolutionary history of the association between Anicetus species and their scale insect hosts via distance-based and tree-based methods. RESULTS: A total of 94 Anicetus individuals (nine parasitoid species) and 113 scale insect individuals (seven host species) from 14 provinces in China were collected in the present study. DNA sequence data from a mitochondrial gene (COI) and a nuclear ribosomal gene (28S D2 region) were used to reconstruct the phylogenies of Anicetus species and their hosts. The distance-based analysis showed a significant fit between Anicetus species and their hosts, but tree-based analyses suggested that this significant signal could be observed only when the cost of host-switching was high, indicating the presence of parasite sorting on related host species. CONCLUSIONS: This study, based on extensive rearing of parasitoids and species identification, provides strong evidence for a prevalence of sorting events and high host specificity in the genus Anicetus, offering insights into the diversification process of Anicetus species parasitizing scale insects.


Assuntos
Evolução Biológica , Hemípteros/genética , Hemípteros/parasitologia , Especificidade de Hospedeiro , Himenópteros/genética , Animais , China , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Genes Mitocondriais , Hemípteros/classificação , Filogenia , RNA Ribossômico 28S/genética
10.
J Virol ; 86(8): 4611-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318150

RESUMO

Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.


Assuntos
Clorófitas/virologia , Phycodnaviridae/fisiologia , Tropismo Viral , DNA Viral , DNA Polimerase Dirigida por DNA/genética , Genótipo , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/isolamento & purificação , Especificidade da Espécie
11.
Int J Parasitol ; 52(8): 559-567, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358503

RESUMO

Monogeneans are highly diverse fish ectoparasites with a direct life cycle, widely distributed, and are known to generally display strict host specificity. Factors related to the hosts and the parasite have been suggested to explain this high specificity. Monogeneans have also been observed to colonise fish species not in their natural host range under experimental conditions. We developed a specific metabarcoding protocol and applied it on the Sparidae-Lamellodiscus host-parasite system, to assess parasite diversity on skin and gills of several sparid host species. We first demonstrated that the use of a metabarcoding approach provided a better understanding of the diversity of monogeneans associated with teleost skin and gills than traditional approaches based on morphological identification. We identified a high diversity of both expected and unexpected (never observed on this host species) Lamellodiscus spp. on each host species and on skin and gills. No significant difference in parasite diversity was found between skin and gills. These results suggest that the establishment of the observed host specificity in monogeneans relies on multiple levels of regulation, involving the survival capacity of the larvae and host recognition mechanisms.


Assuntos
Doenças dos Peixes , Perciformes , Trematódeos , Animais , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Brânquias/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Perciformes/parasitologia , Especificidade da Espécie , Trematódeos/fisiologia
12.
Anim Microbiome ; 4(1): 27, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418308

RESUMO

BACKGROUND: Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. RESULTS: Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. CONCLUSIONS: This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions.

13.
Microorganisms ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296236

RESUMO

Bdellovibrio and like organisms (BALOs) are obligate bacterial predators of other Gram-negative bacteria. Here, we used quantitative PCR (qPCR) and recently developed specific primers which target the 16S rRNA gene to explore the abundance and distribution of three families of BALO belonging to the Oligoflexia class (i.e., Bdellovibrionaceae, Peredibacteraceae and Bacteriovoracaceae) over one year in the epilimnion and hypolimnion of Lakes Annecy and Geneva. Peredibacteraceae was the dominant group at all sampling points except at the bottom of Lake Geneva, where Bdellovibrionaceae was found in higher number. In addition, the abundance of BALOs increased significantly during the warmer months. Using high-throughput sequencing (Illumina Miseq), hundreds of OTUs were identified for Bdellovibrionaceae and Peredibacteraceae. Phylogenetic analysis suggests that Bdellovibrionaceae are more diverse than Peredibacteraceae and that some OTUs belong to new species of Bdellovibrionaceae. We also found that dominant OTUs were present simultaneously in the two lakes, while some others were specific to each lake, suggesting an adaptive pattern. Finally, both abundance and diversity of BALOs were poorly associated with abiotic factors except temperature, suggesting the importance of studying biotic relationships, assumed to play a greater role than physico-chemical variables in BALOs' dynamics and distribution.

14.
J Virol ; 84(24): 12555-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861243

RESUMO

Although marine picophytoplankton are at the base of the global food chain, accounting for half of the planetary primary production, they are outnumbered 10 to 1 and are largely controlled by hugely diverse populations of viruses. Eukaryotic microalgae form a ubiquitous and particularly dynamic fraction of such plankton, with environmental clone libraries from coastal regions sometimes being dominated by one or more of the three genera Bathycoccus, Micromonas, and Ostreococcus (class Prasinophyceae). The complete sequences of two double-stranded (dsDNA) Bathycoccus, one dsDNA Micromonas, and one new dsDNA Ostreococcus virus genomes are described. Genome comparison of these giant viruses revealed a high degree of conservation, both for orthologous genes and for synteny, except for one 36-kb inversion in the Ostreococcus lucimarinus virus and two very large predicted proteins in Bathycoccus prasinos viruses. These viruses encode a gene repertoire of certain amino acid biosynthesis pathways never previously observed in viruses that are likely to have been acquired from lateral gene transfer from their host or from bacteria. Pairwise comparisons of whole genomes using all coding sequences with homologous counterparts, either between viruses or between their corresponding hosts, revealed that the evolutionary divergences between viruses are lower than those between their hosts, suggesting either multiple recent host transfers or lower viral evolution rates.


Assuntos
Evolução Biológica , Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Transferência Genética Horizontal , Genoma Viral , Biologia Marinha , Microalgas/virologia , Infecções por Vírus de DNA/virologia , DNA Viral/fisiologia , Genes Virais/fisiologia , Variação Genética , Filogenia
15.
C R Biol ; 344(4): 311-324, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787603

RESUMO

On the occasion of the 200th anniversary of the birth of Henri de Lacaze-Duthiers, one of the most curious and active scientific minds among 19th century naturalists, this article retraces his scientific career and recalls the long-term changes he made in the practice of science: promotion of experimental zoology, foundation of a modern scientific journal and establishment of the marine stations of Roscoff and Banyuls.


À l'occasion du 200ème anniversaire de la naissance de Henri de Lacaze-Duthiers, l'un des esprits scientifiques les plus curieux et les plus actifs parmi les naturalistes du XIXe siècle, cet article retrace sa carrière scientifique et rappelle les tournants qu'il a durablement imprimés à la pratique de la science : promotion de la zoologie expérimentale, fondation dune revue scientifique moderne et édification des stations marines de Roscoff et de Banyuls.


Assuntos
Zoologia , Humanos , Masculino , Zoologia/história
16.
BMC Evol Biol ; 10: 245, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20698972

RESUMO

BACKGROUND: Sexual morphological features are known to be associated with the mating systems of several animal groups. However, it has been suggested that morphological features other than sexual characteristics could also be constrained by the mating system as a consequence of negative associations. Schistosomatidae are parasitic organisms that vary in mating system and can thus be used to explore links between the mating system and negative associations with morphological features. RESULTS: A comparative analysis of Schistosomatidae morphological features revealed an association between the mating system (monogamous versus polygynandrous) and morphological characteristics of reproduction, nutrition, and locomotion. CONCLUSIONS: The mating system drives negative associations between somatic and sexual morphological features. In monogamous species, males display a lower investment in sexual tissues and a higher commitment of resources to tissues involved in female transport, protection, and feeding assistance. In contrast, males of polygynandrous species invest to a greater extent in sexual tissues at the cost of reduced commitment to female care.


Assuntos
Schistosomatidae/anatomia & histologia , Caracteres Sexuais , Comportamento Sexual Animal , Animais , DNA de Helmintos/genética , DNA Ribossômico/genética , Feminino , Masculino , Modelos Genéticos , Filogenia , RNA Ribossômico 28S/genética , Reprodução/fisiologia , Schistosomatidae/genética , Schistosomatidae/fisiologia , Análise de Sequência de DNA
17.
BMC Evol Biol ; 10: 62, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20184761

RESUMO

BACKGROUND: Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. RESULTS: CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. CONCLUSIONS: Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.


Assuntos
Crustáceos/genética , Evolução Molecular , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes , Hormônios de Invertebrado , Filogenia , Alinhamento de Sequência
18.
Appl Environ Microbiol ; 76(1): 96-101, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897754

RESUMO

Ostreococcus spp. are extremely small unicellular eukaryotic green algae found worldwide in marine environments, and they are susceptible to attacks by a diverse group of large DNA viruses. Several biologically distinct species of Ostreococcus are known and differ in the ecological niches that they occupy: while O. tauri (representing clade C strains) is found in marine lagoons and coastal seas, strains belonging to clade A, exemplified by O. lucimarinus, are present in different oceans. We used laboratory cultures of clonal isolates of these two species to assay for the presence of viruses in seawater samples from diverse locations. In keeping with the distributions of their host strains, we found a decline in the abundance of O. tauri viruses from a lagoon in southwest France relative to the Mediterranean Sea, whereas in the ocean, no O. tauri viruses were detected. In contrast, viruses infecting O. lucimarinus were detected from distantly separated oceans. DNA sequencing, phylogenetic analyses using a conserved viral marker gene, and a Mantel test revealed no relationship between geographic and phylogenetic distances in viruses infecting O. lucimarinus.


Assuntos
Clorófitas/virologia , Phycodnaviridae/classificação , Phycodnaviridae/isolamento & purificação , Água do Mar/virologia , Oceano Atlântico , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , França , Mar Mediterrâneo , Dados de Sequência Molecular , Phycodnaviridae/genética , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
19.
Front Microbiol ; 11: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117128

RESUMO

When considering microbial biotic interactions, viruses as well as eukaryotic grazers are known to be important components of aquatic microbial food webs. It might be the same for bacterivorous bacteria but these groups have been comparatively less studied. This is typically the case of the Bdellovibrio and like organisms (BALOs), which are obligate bacterial predators of other bacteria. Recently, the abundance and distribution of three families of this functional group were investigated in perialpine lakes, revealing their presence and quantitative importance. Here, a more in-depth analysis is provided for Lake Geneva regarding the diversity of these bacterial predators at different seasons, sites and depths. We reveal a seasonal and spatial (vertical) pattern for BALOs. They were also found to be relatively diverse (especially Bdellovibrionaceae) and assigned to both known and unknown phylogenetic clusters. At last we found that most BALOs were positively correlated to other bacterial groups, mainly Gram-negative, in particular Myxococcales (among which many are predators of other microbes). This study is the first shedding light on this potentially important bacterial killing group in a large and deep lake.

20.
Mol Ecol Resour ; 20(2): 468-480, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31834985

RESUMO

Microbial communities, which drive major ecosystem functions, consist of a wide range of interacting species. Understanding how microbial communities are structured and the processes underlying this is crucial to interpreting ecosystem responses to global change but is challenging as microbial interactions cannot usually be directly observed. Multiple efforts are currently focused to combine next-generation sequencing (NGS) techniques with refined statistical analysis (e.g., network analysis, multivariate analysis) to characterize the structures of microbial communities. However, most of these approaches consider a single table of sequencing data measured for several samples. Technological advances now make it possible to collect NGS data on different taxonomic groups simultaneously for the same samples, allowing us to analyse a pair of tables. Here, an analytical framework based on co-correspondence analysis (CoCA) is proposed to study the distributions, assemblages and interactions between two microbial communities. We show the ability of this approach to highlight the relationships between two microbial communities, using two data sets exhibiting various types of interactions. CoCA identified strong association patterns between autotrophic and heterotrophic microbial eukaryote assemblages, on the one hand, and between microalgae and viruses, on the other. We demonstrate also how CoCA can be used, complementary to network analysis, to reorder co-occurrence networks and thus investigate the presence of patterns in ecological networks.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Eucariotos/fisiologia , Processos Heterotróficos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA