Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biol Chem ; 397(1): 85-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524378

RESUMO

A key link between amino acid catabolism and immune regulation in cancer is the augmented tryptophan (Trp) catabolism through the kynurenine pathway (KP), a metabolic route induced by interferon-γ (IFN-γ) and related to poor prognosis in melanomas. Besides its role in cancer, IFN-γ plays a key role in the control of pigmentation homeostasis. Here we measured KP metabolites in human melanoma lines and skin melanocytes and fibroblasts in response to IFN-γ. In general, IFN-γ affected KP in skin cells more than in melanoma cells, supporting IFN-γ roles in skin physiology and that of stromal cells in modulating the tumor microenvironment.


Assuntos
Interferon gama/metabolismo , Cinurenina/biossíntese , Melanócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral , Humanos
2.
Blood ; 124(5): 750-60, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24850760

RESUMO

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population that shares certain characteristics including an aberrant myeloid phenotype and the ability to suppress T cells. MDSCs have been predominantly studied in malignant diseases and findings suggest involvement in tumor-associated immune suppression. Chronic lymphocytic leukemia (CLL) is the leukemia with the highest incidence among adults. Immune defects occur already at early disease stages and impact the clinical course. We assessed presence, frequency, association to other immune parameters, and functional properties of circulating CD14(+) cells lacking HLA-DR expression (HLA-DR(lo)) in patients with untreated CLL. These monocytic cells represent one of the best-defined human MDSC subsets. Frequency of CD14(+)HLA-DR(lo) cells was significantly increased in CLL patients. Furthermore, MDSCs suppressed in vitro T-cell activation and induced suppressive regulatory T cells (TRegs). The MDSC-mediated modulation of T cells could be attributed to their increased indoleamine 2,3-dioxygenase (IDO) activity. CLL cells induced IDO(hi) MDSCs from healthy donor monocytes suggesting bidirectional crosstalk between CLL-cells, MDSCs, and TRegs. Overall, we identified a MDSC population that expands in CLL. The exact mechanisms responsible for such accumulation remain to be elucidated and it will be of interest to test whether antagonizing suppressive functions of CLL MDSCs could represent a mean for enhancing immune responses.


Assuntos
Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos HLA-DR/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Receptores de Lipopolissacarídeos/imunologia , Masculino , Células Mieloides/patologia , Linfócitos T Reguladores/patologia
3.
Int J Mol Sci ; 17(12)2016 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973435

RESUMO

Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.


Assuntos
Soro Antilinfocitário/farmacologia , Células Dendríticas/imunologia , Tolerância Imunológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/enzimologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/imunologia , Triptofano/metabolismo
4.
Arthritis Rheum ; 64(12): 3867-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933357

RESUMO

OBJECTIVE: In rheumatoid arthritis (RA) synovial fluid, levels of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol are elevated. Since synovial fibroblasts (SFs) possess all of the enzymes necessary for endocannabinoid synthesis, it is likely that these cells contribute significantly to elevated endocannabinoid levels. While glucocorticoids initiate endocannabinoid synthesis in neurons, this study was undertaken to test whether cortisol also regulates endocannabinoid levels in mesenchymal cells such as SFs, and whether this interferes with integrin-mediated adhesion. METHODS: Adhesion was determined in 1-minute intervals over 60 minutes using an xCELLigence system. Slopes from individual treatment groups were averaged and compared to the control. Fatty acid amide hydrolase (FAAH) and cyclooxygenase 2 (COX-2) were detected by immunocytochemistry, and AEA was detected by mass spectrometry. RESULTS: Cortisol increased the adhesion of RASFs and osteoarthritis SFs with a maximum of 200% at both 10(-7) M and 10(-8) M. When cortisol was administered together with either cannabinoid receptor 1 (CB(1) ) antagonist (rimonabant; 100 nM), CB(2) antagonist (JTE907; 100 nM), transient receptor potential vanilloid channel 1 (TRPV-1) antagonist (capsazepine; 1 µM), FAAH inhibitor, or COX-2 inhibitor, adhesion was reduced below the level in controls. Concomitant inhibition of FAAH and COX-2 reversed these effects. Mass spectrometry revealed the presence of AEA in SFs. CONCLUSION: Our findings indicate that glucocorticoid-induced adhesion is dependent on CB(1) /CB(2) /TRPV-1 activation. Since AEA is produced in SFs, this endocannabinoid is the most likely candidate to mediate these effects. Since AEA levels are regulated by COX-2 and FAAH, inhibition of both enzymes along with low-dose glucocorticoids may provide a therapeutic option to maximally boost the endocannabinoid system in RA, with possible beneficial effects.


Assuntos
Ácidos Araquidônicos/metabolismo , Adesão Celular/efeitos dos fármacos , Endocanabinoides/metabolismo , Fibroblastos/patologia , Hidrocortisona/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Membrana Sinovial/patologia , Idoso , Amidoidrolases/metabolismo , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo
5.
Gut Microbes ; 10(2): 133-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30118620

RESUMO

OBJECTIVES: After allogeneic hematopoietic stem cell transplantation (allo-HCT), urinary levels of 3-indoxyl sulfate (3-IS) correlate with the relative abundance of bacteria from the class Clostridia (RAC), and antibiotic treatment is considered the major determinant of this outcome. A high RAC has been associated with favorable outcome after allo-HCT and protection from Clostridium difficile infection (CDI). We assessed correlations between alpha diversity, RAC and urinary 3-IS levels in a non-allo-HCT clinical cohort of antibiotic treated patients to further explore 3-IS as a biomarker of reduced diversity and predisposition to CDI. METHODS: Fecal and urinary specimens were analyzed from 40 non-allo-HCT hospitalized patients before and 9 ± 2 days after initiation of intravenous antibiotic treatment. Fecal microbiota were analyzed by 16s RNA sequencing and urinary 3-IS was analyzed by liquid chromatography-tandem mass spectrometry. Receiver operating characteristic (ROC) analysis was performed to assess the predictive value of 3-IS. RESULTS: At a RAC cutoff of <30%, the binary logarithm of 3-IS (medium 3-IS: ≤2.5; high 3-IS: >2.5) was predictive with an accuracy of 82% (negative predictive value: 87%, positive predictive value 67%). Accuracy was improved by combing antibiotic history with 3-IS levels (accuracy 89%, npv 88%, ppv 92%). CONCLUSION: In conjunction with patient antibiotic history, 3-IS is a candidate marker to predict RAC.


Assuntos
Biomarcadores/urina , Clostridiales/classificação , Clostridiales/isolamento & purificação , Infecções por Clostridium/diagnóstico , Microbioma Gastrointestinal , Indicã/urina , Adulto , Idoso , Antibacterianos/farmacologia , Biodiversidade , Clostridiales/efeitos dos fármacos , Clostridiales/genética , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
6.
Cancer Res ; 78(7): 1604-1618, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343522

RESUMO

Cancer cells alter their metabolism to support their malignant properties. In this study, we report that the glucose-transforming polyol pathway (PP) gene aldo-keto-reductase-1-member-B1 (AKR1B1) strongly correlates with epithelial-to-mesenchymal transition (EMT). This association was confirmed in samples from lung cancer patients and from an EMT-driven colon cancer mouse model with p53 deletion. In vitro, mesenchymal-like cancer cells showed increased AKR1B1 levels, and AKR1B1 knockdown was sufficient to revert EMT. An equivalent level of EMT suppression was measured by targeting the downstream enzyme sorbitol-dehydrogenase (SORD), further pointing at the involvement of the PP. Comparative RNA sequencing confirmed a profound alteration of EMT in PP-deficient cells, revealing a strong repression of TGFß signature genes. Excess glucose was found to promote EMT through autocrine TGFß stimulation, while PP-deficient cells were refractory to glucose-induced EMT. These data show that PP represents a molecular link between glucose metabolism, cancer differentiation, and aggressiveness, and may serve as a novel therapeutic target.Significance: A glucose-transforming pathway in TGFß-driven epithelial-to-mesenchymal transition provides novel mechanistic insights into the metabolic control of cancer differentiation. Cancer Res; 78(7); 1604-18. ©2018 AACR.


Assuntos
Aldeído Redutase/genética , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , L-Iditol 2-Desidrogenase/genética , Neoplasias Pulmonares/patologia , Células A549 , Animais , Linhagem Celular Tumoral , Glucose/metabolismo , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Células MCF-7 , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA